Строительный портал - NativeStudio

Виды предохранителей: назначение, описание, маркировка. Материал плавких вставок Из чего делают плавкий предохранитель

Предохранители - это коммутационные электротехнические изделия, используемые для защиты электрической сети от сверхтоков и токов короткого замыкания. Принцип действия предохранителей основан на разрушении специально предназначенных для этого токоведущих частей (плавких вставок) внутри самого устройства при протекании по ним тока, величина которого превышает определенное значение.


Плавкие вставки являются основным элементом любого предохранителя. После перегорания (отключения тока) они подлежат замене. Внутри плавкой вставки располагается плавкий элемент (именно он и перегорает), а также дугогасительное устройство. Плавкая вставка чаще всего изготавливается из фарфорового или фибрового корпуса и крепится в специальные токопроводящие части предохранителя. Если предохранитель предназначен на малые токи, то плавкая вставка для него может не иметь корпуса, т. е. быть бескорпусной.


К основным характеристикам плавких ставок предохранителя можно отнести: номинальный ток, номинальное напряжение, отключающая способность.


Также к элементам предохранителя относятся:


Держатель плавкой вставки - съемный элемент, главное предназначение которого удерживать плавкую вставку;


Контакты плавкой вставки - часть предохранителя, которая обеспечивает электрическую связь между проводниками и контактами плавкой вставки;


Боек предохранителя - специальный элемент, задача которого при срабатывании предохранителя воздействовать на другие устройства и контакты самого предохранителя.


Все предохранители делятся на несколько десятков видов:


По конструкции плавких вставок предохранители бывают разборные и неразборные. У разборных предохранителей можно заменять плавкую вставку после ее перегорания, у неразборных предохранителей это сделать не получится;


Присутствию наполнителя. Бывают предохранители с наполнителем и без наполнителя;


Конструкции изготовления плавких вставок. Различают предохранители с ножевыми, болтовыми и фланцевыми контактами;


Корпусу плавкой вставки предохранители делятся на трубчатые и призматические. У первого вида предохранителей плавкая вставка имеет цилиндрическую форму, у второго вида - форму прямоугольного параллелепипеда;


Виду плавких вставок в зависимости от диапазона токов отключения. Есть предохранители с отключающей способностью в полном диапазоне токов отключения - g и с отключающей способностью в части диапазона токов отключения - а;


Быстродействию. Есть предохранители небыстродействующие (используются в большинстве случаев в трансформаторах, кабелях, электрических машинах) и быстродействующие (применяются в полупроводниковых приборах);


Конструкции основания предохранители могут быть с калибровочным основанием (в таких предохранителях не удастся установить плавкую вставку, предназначенную для работы с большим, чем сам предохранитель, номинальным током) и с некалиброванным основанием (в такие предохранители можно установить плавкую вставку, номинальный ток которой больше номинального тока самого предохранителя);


Напряжению предохранители делятся на низковольтные и высоковольтные;


Количеству полюсов. Бывают одно-, двух-, трехполюсные предохранители;


Наличию и отсутствию свободных контактов. Есть предохранители со свободными контактами и без них;


Присутствию бойка и указателя срабатывания предохранители бывают - без бойка и без указателя, с указателем без бойка, с бойком без указателя, с указателем и бойком;


Способу крепления проводников предохранители делятся на предохранители с передним присоединением, задним, универсальным (и задним, и передним);


Способу монтажа. Есть предохранители на собственном основании и без него.


Исторически сложилось так, что механическое исполнение корпусов предохранителей и их габаритные и присоединительные размеры различны в разных странах. Существуют четыре основных национальных стандарта на присоединительные размеры предохранителей: североамериканский, немецкий, британский и французский. Есть также ряд корпусов предохранителей, одинаковых для разных стран и не относящихся к национальным стандартам. Чаще всего такие корпуса относятся к стандартам фирмы-производителя, разработавшей конкретный тип прибора, который оказался удачным и закрепился на рынке. В последние десятилетия, в рамках процессов глобализации экономики, производители постепенно присоединяются к международной системе стандартов корпусов предохранителей для упрощения условий взаимозаменяемости приборов. При выборе следует стараться использовать предохранители международных стандартов: IEC 60127, IEC 60269, IEC 60282, IEC 60470, IEC60549, IEC 60644.


Необходимо отметить, что по виду плавких вставок в зависимости от диапазона токов отключения и быстродействия предохранители разделены на классы использования. При этом первая буква указывает функциональный класс, а вторая - подлежащий защите объект:


1-я буква:


a - защита с отключающей способностью в части диапазона (accompanied fuses): плавкие вставки предохранителей способные как минимум длительно пропускать токи, не превышающие указанного для них расчетного тока, и отключать токи определенной кратности относительно расчетного тока вплоть до расчетной отключающей способности;


g - защита с отключающей способностью во всем диапазоне (general purpose fuses): плавкие вставки предохранителей, способные как минимум длительно пропускать токи, не превышающие указанного для них расчетного тока, и отключать токи от минимального тока выплавления и до расчетной отключающей способности.


2-я буква:


G - защита кабелей и проводов;


M - защита коммутационных аппаратов/двигателей;


R - защита полупроводников/тиристоров;


L - защита кабелей и проводов (в соответствии со старой, уже не действующей нормой DIN VDE);


Tr - защита трансформаторов.


Общий вид времятоковых характеристик плавких предохранителей основных категорий использования приведен на рисунке 2.1.


Плавкие вставки со следующими классами использования обеспечивают:


gG (DIN VDE/МЭК) - защита кабелей и проводов во всем диапазоне;


aM (DIN VDE/МЭК) - защита коммутационных аппаратов в части диапазона;


aR (DIN VDE/МЭК) - защита полупроводников в части диапазона;


gR (DIN VDE/МЭК) - защита полупроводников во всем диапазоне;


gS (DIN VDE/МЭК) - защита полупроводников, а также кабелей и линий во всем диапазоне.


Предохранители с отключающей способностью во всем диапазоне (gG, gR, gS) надежно отключают как при токах КЗ, так и при перегрузках.



Рис. 2.1.


Предохранители с отключающей способностью в части диапазона (aM, aR) служат исключительно для защиты от короткого замыкания.


Для защиты установок на напряжение до 1000 В используют электрические, трубчатые и открытые (пластинчатые) предохранители.


Электрический предохранитель состоит из фарфорового корпуса и пробки с плавкой вставкой. Питающую линию присоединяют к контакту предохранителя, отходящую - к винтовой резьбе. При коротком замыкании или перегрузке плавкая вставка перегорает, и ток в цепи прекращается. Применяют следующие типы электрических предохранителей: Ц-14 на ток до 10 А и напряжение 250 В с прямоугольным основанием; Ц-27 на ток до 20 А и напряжением 500 В с прямоугольным или квадратным основанием и Ц-33 на ток до 60 А и напряжение 500 В с прямоугольным или квадратным основанием.


Например, электрические предохранители резьбовые, серии ПРС, предназначены для защиты от перегрузок и коротких замыканий электрооборудования и сетей. Номинальное напряжение предо


хранителей - 380 В переменного тока частотой 50 или 60 Гц. Конструктивно предохранители ПРС (рис. 2.2) состоят из корпуса, плавкой вставки ПВД, головки, основания, крышки, центрального контакта.


Предохранители ПРС выпускаются на номинальные токи плавкой вставки от 6 до 100 А. В обозначении предохранителя указывается, какого он присоединения: ПРС-6-П - предохранитель на 6 А, переднего присоединения проводов; ПРС-6-З - предохранитель на 6А, заднего присоединения проводов.


Предохранители цилиндрические ПЦУ-6 и ПЦУ-20 с резьбовым цоколем Ц-27 и плавкими вставками на токи 1, 2, 4, 6, 10, 15, 20 ампер выпускаются в пластмассовом корпусе. Предохранители ПД имеют основание из фарфора, а у предохранителей ПДС материал основания - стеатит. В бытовых условиях применяют автоматические пробочные предохранители, где защищаемая цепь восстанавливается кнопкой.


Трубчатые предохранители выпускают следующих типов: ПР-2, НПН и ПН-2. Предохранитель ПР-2 (предохранитель разборный) предназначен для установки в сетях напряжением до 500 В и на токи 15, 60, 100, 200, 400, 600 и 1000 А.


В патроне предохранителя ПР-2 (рис. 2.3) плавкая вставка 5, прикрепляемая винтами 6 к контактным ножам 1, помещена в фибровую трубку 4, на которую насажены втулки 3 с резьбой. На них навинчены латунные колпачки 2, закрепляющие контактные ножи, которые входят в неподвижные пружинящие контакты, устанавливаемые на изоляционной плите. 




Рис. 2.2.




Рис. 2.3.


Под действием электрической дуги, возникающей при перегорании предохранителя, внутренняя поверхность фибровой трубки разлагается, и образуются газы, способствующие быстрому гашению дуги.


К закрытым предохранителям с мелкозернистным наполнителем относятся предохранители типа НПН, НПР, ПН2, ПН-Р, КП. У предохранителей типа НПН (наполненный предохранитель неразборный) трубка стеклянная. У остальных трубки фарфоровые. Предохранители типа НПН имеют цилиндрическую форму, ПН - прямоугольную.


Комплект предохранителя НПН состоит из: плавкой вставки - 1 шт; контакт-основания - 2 шт.


Предохранители НПН изготовляют на напряжение до 500 В и токи от 15 до 60 А, предохранители ПН2 (предохранитель насыпной разборный) - на напряжение до 500 В и токи от 10 до 600 А. В насыпных предохранителях плавкие вставки, выполненные из нескольких параллельных медных или посеребренных проволок, помещены в закрытый фарфоровый патрон, заполненный кварцевым песком. Кварцевый песок способствует интенсивному охлаждению и деионизации газов, появляющихся при горении дуги. Так как трубки закрыты, то брызги расплавленного металла плавких вставок и ионизированные газы не выбрасываются наружу. Это уменьшает пожарную опасность и повышает безопасность обслуживания предохранителей. Предохранители с наполнителем так же, как и предохранители типа ПР, - токоограничивающие.


Пластинчатые открытые предохранители состоят из медных или латунных пластин - наконечников, в которые впаяны медные калиброванные проволоки. Наконечники с помощью болтов присоединяют к контактам на изоляторах.


Предохранители типа НПР - патрон закрытый разборный (фарфоровый) с наполнителем из кварцевого песка на номинальные токи до 400 А.


Предохранители ПД (ПДС) - 1, 2, 3, 4, 5 - с наполнителем для установки непосредственно на токоведущие шины на токи от 10 до 600 А.


Для защиты силовых вентилей полупроводниковых преобразователей средней и большой мощности при внешних и внутренних коротких замыканиях широко применяются быстродействующие плавкие предохранители, которые являются самыми дешевыми средствами защиты. Они состоят из контактных ножей и плавкой вставки из серебряной фольги, помещенных в закрытый фарфоровый патрон. 


Плавкая вставка таких предохранителей имеет узкие калиброванные перешейки, которые снабжены радиаторами из хорошо проводящего тепло керамического материала, посредством которых тепло отводится к корпусу предохранителя. Эти радиаторы служат также дугогасительными камерами с узкой щелью, что значительно улучшает гашение дуги, возникающей в области перешейка. Параллельно плавкой вставке установлен сигнальный патрон, блинкер которого сигнализирует о расплавлении плавкой вставки и, воздействуя на микровыключатель, замыкает сигнальные контакты.


Длительное время промышленностью выпускались два типа быстродействующих плавких предохранителей, предназначенных для защиты от токов короткого замыкания преобразователей с силовыми полупроводниковыми вентилями:


1) предохранители типа ПНБ-5 (рис. 2.4, а) для работы в цепях с номинальным напряжением до 660 В постоянного и переменного тока на номинальные токи 40, 63, 100, 160, 250, 315, 400, 500 и 630 А;


2) предохранители типа ПБВ для работы в цепях переменного тока с частотой 50 Гц номинальным напряжением 380 В на номинальные токи от 63 до 630 А.




Рис. 2.4.


В настоящее время промышленностью выпускаются предохранители типа ПНБ-7 (рис. 2.4, б) на номинальный ток 1000 А и на номинальные напряжения электрической цепи 690 В переменного тока. Плавкие элементы предохранителя ПНБ-7 выполнены из чистого серебра (быстродействие и долговечность). Контакты (выводы) предохранителя созданы из электротехнической меди с гальваническим покрытием (высокая токопроводность и долговечность).


Корпус предохранителя сделан из высокопрочного ультрафарфора. Конструкция предохранителя позволяет применять дополнительные устройства - указатель срабатывания, свободный контакт.


Структура условного обозначения предохранителей ПНБ7- 400/100-Х1-Х2:


ПНБ-7 - обозначение серии; 


400 - номинальное напряжение, В;


100 - номинальный ток;


Х1 - условное обозначение вида монтажа и вида присоединения проводников к выводам: 2 - на собственном изоляционном основании с контактами основания; 5 - на основаниях комплектных устройств с контактами основания; 8 - без основания, без контактов (плавкая вставка);


Х2 - условное обозначение наличия указателя срабатывания: 0 - без сигнализации; 1 - с бойком и свободным контактом; 2 - с указателем срабатывания; 3 - с бойком.


Плавкие предохранители промышленного назначения серии ПП предназначены для защиты электрооборудования промышленных установок и электрических цепей от перегрузок и коротких замыканий.


Выпускаются предохранители данной серии следующих основных типов: ПП17, ПП32, ПП57, ПП60С. Предохранители изготавливают с указателем срабатывания, с указателем срабатывания и свободным контактом или без сигнализации. В зависимости от типа предохранители рассчитаны на напряжение до 690 В и на номинальные токи от 20 А до 1000 А. Конструктивные особенности позволяют устанавливать свободные контакты замыкающие или размыкающие, а также способ монтажа - на собственном основании, на основании комплектных устройств, на проводниках комплектных устройств.


Структура обозначения предохранителей типа ПП17 и ПП32 - Х1Х2 - Х3 - Х4 - ХХХХ:


1) Х1Х2 - условное обозначение габарита (номинальный ток, А): 31 -100А; 35 - 250А; 37 - 400А; 39 - 630А.


2) Х3 - условное обозначение вида монтажа и вида присоединения: 2 - на собственном основании, 5 - на основании комплектных устройств, 7 - на проводниках комплектных устройств (болтовое присоединение), 8 - без основания (плавкая вставка), 9 - без основания (плавкая вставка в части размеров унифицирована с предохранителями ПН2-100 и ПН2-250).


3) Х4 - условное обозначение наличия указателя срабатывания, бойка, свободного контакта: 0 - без сигнализации, 1 - с бойком и свободным контактом, 2 - с указателем срабатывания, 3 - с бойком.


4) ХХХХ - климатическое исполнение: УХЛ, Т и категория размещения 2, 3.


В настоящее время полупроводниковые преобразователи оснащаются предохранителями серии ПП57 (рис. 2.5, а) и ПП60С (рис. 2.5, б).



Рис. 2.5.


Первые предназначены для защиты преобразовательных агрегатов при внутренних коротких замыканиях переменного и постоянного тока при напряжениях 220 - 2000 В на токи 100, 250, 400, 630 и 800 А. Вторые - при внутренних коротких замыканиях переменного тока при напряжениях 690 В на токи 400, 630, 800 и 1000 А.


Структура обозначения предохранителей типа ПП57 - ABCD - EF:


Буквы ПП - предохранитель плавкий;


Двузначное число 57 - условный номер серии;


А - двузначное число - условное обозначение номинального тока предохранителя;


В - цифра - условное обозначение номинального напряжения предохранителя;


С - цифра - условное обозначение по способу монтажа и виду присоединения проводников к выводам предохранителя (например, 7 - на проводниках преобразовательного устройства - болтовое с уголковыми выводами);


D - цифра - условное обозначение наличия указателя срабатывания и контакта вспомогательной цепи:


0 - без указателя срабатывания, без контакта вспомогательной



1 - с указателем срабатывания, с контактом вспомогательной



2 - с указателем срабатывания, без контакта вспомогательной цепи;


Е - буква - условное обозначение климатического исполнения;




Пример условного обозначения предохранителя: ПП57-37971-УЗ.


Предохранители плавкие ППН предназначаются для защиты кабельных линий и промышленных электроустановок от токов перегрузки и короткого замыкания. Предохранители применяются в электрических сетях переменного тока частотой 50 Гц с напряжением до 660 В и устанавливаются в низковольтные комплектные устройства, например, в распределительные панели ЩО-70, вводно-распределительные устройства ВРУ1, шкафы распределительные силовые ШРС1 и т. п.


Преимущества предохранителей ППН:


1) корпус предохранителя и основание держателя изготовлены из керамики;


2) контакты предохранителя и держателя изготовлены из электротехнической меди;


3) корпус предохранителей засыпан мелкодисперсным кварцевым песком;


4) габаритные размеры предохранителей на ~15 % меньше предохранителей ПН-2;


5) потери мощности на ~40 % меньше, чем у предохранителей ПН-2;


6) наличие индикатора срабатывания;


7) предохранители монтируются и демонтируются с помощью универсального съемника.


Особенности конструкции предохранителей серии ППН приведены на рис. 2.6 .


Предохранители плавкие серии ППНИ (рис. 2.7) общего применения предназначены для защиты промышленных электроустановок и кабельных линий от перегрузки и короткого замыкания и выпускаются на номинальные токи от 2 до 630 А.


Используются в однофазных и трехфазных сетях напряжением до 660 В частоты 50 Гц. Области применения предохранителей ППНИ: вводно-распределительные устройства (ВРУ); шкафы и пункты распределительные (ШРС, ШР, ПР); оборудование трансформаторных подстанций (КСО, ЩО); шкафы низкого напряжения (ШР-НН); шкафы и ящики управления. 





Рис. 2.6.


Вследствие использования качественных современных материалов и новой конструкции, в предохранителях ППНИ снижены потери мощности по сравнению с предохранителями ПН-2. Данные, представленные в таблице 2.1, показывают экономичность предохранителей ППНИ по сравнению с ПН-2.





Рис. 2.7.





Контакты предохранителя и держателя выполнены из электротехнической меди с гальваническим покрытием сплавом олово-висмут, что предотвращает их окисление в процессе эксплуатации.




Основание держателя (изолятор) выполнено из армированной термореактивной пластмассы, стойкой к коррозии, механическим воздействиям, перепадам температуры и динамическим ударам, которые возникают при коротких замыканиях вплоть до 120 кА.




Контакты плавкой вставки выполнены в форме ножа (заострены), что позволяет их устанавливать в держатели с меньшими усилиями.




Все габариты плавких вставок ППНИ удобно устанавливать или демонтировать универсальной рукояткой съема РС-1, изоляция которой выдерживает напряжение до 1000 В. 




Для быстрого и эффективного дугогашения корпус плавкой вставки наполнен кварцевым песком высокой химической очистки.




Плавкий элемент выполнен из фосфористой бронзы (сплав меди с цинком с добавлением фосфора) и надежно соединен точечной сваркой с выводами предохранителя.




В конструкции плавкой вставки есть специальный индикатор, выполненный в виде выдвижного штока, который позволяет визуально определять сработавшие предохранители.




Предохранители ППНИ с отключающей способностью во всем диапазоне «gG» надежно срабатывают как при токах короткого замыкания, так и при перегрузках.




Конструкция, технические параметры, габаритные и установочные размеры плавких вставок и держателей ППНИ соответствуют современным стандартам МЭК и ГОСТ, а, следовательно, этими предохранителями можно заменять другие отечественные и импортные предохранители.

Выбор плавких вставок предохранителей


Предохранители устанавливаются на всех ответвлениях, если сечение провода на ответвлении меньше сечения провода в магистрали, на вводах и в головных участках сети в вводнораспределительных устройствах, шкафах распределительных силовых и силовых ящиках комплектно с рубильниками или на отдельных панелях. Для избирательности действия необходимо, чтобы каждый следующий предохранитель по направлению к источнику тока имел


номинальный ток плавкой вставки хотя бы на одну ступень больше, чем предыдущий.


Для расчета защиты сетей и оборудования, выполненной с помощью плавких предохранителей, необходимы следующие данные:


Номинальное напряжение предохранителя;


Максимальный ток короткого замыкания, отключаемый предохранителем;


Номинальный ток предохранителя;


Номинальный ток плавкой вставки предохранителя;


Защитная характеристика предохранителя.


Номинальным напряжением предохранителя (Uном,пр) называется


указанное на нем напряжение, для продолжительной работы при котором он предназначен. Действительное напряжение сети (Uс) не должно превышать номинального напряжения предохранителя больше чем на 10 %:


Uс ≤ 1,1 Uном,пр (2.1)


Номинальным током предохранителя (Iном,пр) называется указанный на нем ток, равный наибольшему из номинальных токов плавких вставок (Imax ном,ПВ), предназначенных для данного предохранителя. Это максимальный длительный ток, пропускаемый предохранителем по условию нагрева его деталей, кроме вставок.


Iном,пр = Imax ном,ПВ (2.2)


Максимальным отключаемым током (разрывной способностью) предохранителя (Imах,пр) называется наибольшее значение (эффективное) периодической составляющей тока, отключаемого предохранителем без разрушения и опасного выброса пламени или продуктов горения электрической дуги. Эта величина предохранителей для каждого типа может изменяться в зависимости от напряжения, номинального тока предохранителя, величины соsф в отключаемой цепи и прочих условий.


Номинальным током плавкой вставки предохранителя (Iном,ПВ) называется указанный на ней ток, для продолжительной работы при котором она предназначена. Практически это максимальный длительный ток, пропускаемый вставкой (Imax,ПB), по условию допустимого нагрева самой вставки. 


Iном,ПВ = Imax,ПВ (2.3)


Обычно, кроме номинального тока вставки, указывают еще два значения так называемых испытательных токов, по которым калибруются вставки. Нижнее значение испытательного тока плавкая вставка должна выдерживать определенное время, обычно 1 ч, не расплавляясь; при верхнем значении испытательного тока вставка должна перегорать за время не больше определенного, обычно также 1 ч.


Основными данными для определения времени cгoрания вставки, а, следовательно, и селективности последовательно включенных предохранителей являются их защитные характеристики.


Защитной характеристикой предохранителя называется зависимость полного времени отключения (суммы времени плавления вставки и времени горения дуги) от величины отключаемого тока.


Защитные характеристики обычно даются в виде графика, в прямоугольных координатах. По вертикальной оси координат откладывается время, а по горизонтальной оси - кратность тока, отключаемого предохранителем, к номинальному току вставки, или отключаемый ток.


Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.


Выбор плавких вставок предохранителей по условию селективности следует производить, пользуясь типовыми защитными характеристиками предохранителей, с учетом возможного разброса реальных характеристик по данным завода-изготовителя.


Типичная времятоковая характеристика современного предохранителя двойного действия приведена на рисунке 2.8.


При номинальном токе 200 А предохранитель должен работать неограниченное время. По характеристике видно, что при уменьшении тока время срабатывания в области малых токов быстро растет и кривая зависимости в идеале должна асимптотически стремиться к прямой I = 200 А, для времени t = + ∞. В области рабочих перегрузок, то есть в случае, когда ток через предохранитель находится в пределах (1-5)⋅Iном, время срабатывания предохранителя достаточно велико - превышает единицы секунд (при токе 1000А время срабатывания равно 10с).


Такой вид зависимости позволяет защищаемому оборудованию свободно работать во всем диапазоне рабочих перегрузочных характеристик. При дальнейшем увеличении тока, крутизна времятоковой характеристики (рис. 2.8) быстро возрастает, и уже при одиннадцатикратной перегрузке время срабатывания составляет всего 10 мс. Дальнейший рост тока перегрузки сокращает время срабатывания еще в большей степени, хотя и не так быстро, как на участке между пяти- и десятикратной перегрузки. Это объясняется конечной скоростью гашения дуги из-за конечной теплоемкости материала наполнителя, конечной теплоты плавления материала плавкой перемычки и определенной массы плавящегося и испаряющегося металла перемычки. При дальнейшем увеличении тока (более чем 15-20-кратно относительно номинального) время срабатывания плавкого элемента может составлять 0,02-0,5 мс в зависимости от типа и конструкции предохранителя.



Рис. 2.8.


При номинальном токе 200 А предохранитель должен работать неограниченное время. По характеристике видно, что при уменьшении тока, время срабатывания в области малых токов быстро растет, и кривая зависимости в идеале должна асимптотически стремиться к прямой I = 200 А, для времени t = + ∞. В области рабочих перегрузок, т. е. в случае, когда ток через предохранитель находится в пределах (1-5)⋅Iном, время срабатывания предохранителя достаточно велико - превышает единицы секунд (при токе 1000 А время срабатывания равно 10 с).


Такой вид зависимости позволяет защищаемому оборудованию свободно работать во всем диапазоне рабочих перегрузочных характеристик. При дальнейшем увеличении тока, крутизна времятоковой характеристики (рис. 2.8) быстро возрастает, и уже при одиннадцатикратной перегрузке время срабатывания составляет всего 10 мс. Дальнейший рост тока перегрузки сокращает время срабатывания еще в большей степени, хотя и не так быстро, как на участке между пяти- и десятикратной перегрузке. Это объясняется конечной скоростью гашения дуги из-за конечной теплоемкости материала наполнителя, конечной теплоты плавления материала плавкой перемычки и определенной массы плавящегося и испаряющегося металла перемычки. При дальнейшем увеличении тока (более чем 15-20-кратно относительно номинального) время срабатывания плавкого элемента может составлять 0,02-0,5 мс в зависимости от типа и конструкции предохранителя.


Фирма Siemens выпускает широкую номенклатуру плавких предохранителей (комбинаций gG, gM, aM, gR, aR, gTr, gF, gFF), шести типоразмеров - 000(00С), 00, 1, 2, 3, 4а (обозначения согласно IEC) на номинальные токи от 2 до 1600 А и напряжения (~ 400В, 500В и 690В; - 250В, 440В) с наиболее часто применяемыми на практике контактами ножевого типа (NH), преимущественно вертикального положения установки.


Предохранители типа NH обладают высокой отключающей способностью и стабильностью характеристик. Применение предохранителей типа NH позволяет обеспечивать селективность защиты при КЗ.


Плавкие предохранители ножевого типа NH (аналог ППН), предназначены для установки в контактодержатели PBS, PBD, в ПВР серии АРС и RBK, а также в выключатели нагрузки типа RAB. Возможно применение данных предохранителей в защитных аппаратах, рассчитанных на применение отечественных вставок типа ППН.


Предохранители типа NH представляют собой предохранитель с гашением дуги в закрытом объеме. Плавкая вставка штампуется из цинка, являющегося легкоплавким и стойким к коррозии металлом. Форма плавкой вставки позволяет получить благоприятную времятоковую (защитную) характеристику. Вставка располагается в герметичном изоляционном керамическом корпусе. Наполнитель - кварцевый песок с содержанием SiO не менее 98 %, с зернами (0,2-0,4)⋅10 -3 м и влажностью не выше 3 %.


При отключении сгорают суженные перешейки плавкой вставки, после чего возникшая дуга гасится благодаря эффекту токоограничения, возникшему при перегорании суженных участков плавкой вставки. Среднее время гашения дуги составляет 0,004 с.


Времятоковые характеристики предохранителей типа NH для класса использования gG приведены на рисунке 2.9.



2 10 100 1 000 10 000 100 000


Ожидаемый ток КЗ IP, А


Рис. 2.9.


Предохранители типа NH работают бесшумно, практически без выброса пламени и газов, что позволяет устанавливать их на близком расстоянии друг от друга.


Еще одной важной характеристикой предохранителя, как защитного устройства, является так называемый защитный показатель, в зарубежных источниках именуемый I 2 ⋅t. Для защищаемой электрической цепи защитный показатель - это количество тепла, выделяемого в цепи с момента возникновения аварийной ситуации до момента полного отключения цепи защитным устройством. Величина защитного показателя конкретного устройства, по сути, определяет предел его устойчивости к тепловому разрушению в аварийных режимах. При вычислении величины защитного показателя используется эффективное значение тока в цепи.


Например, эффективное значение тока, протекающего через предохранитель, можно рассчитать для часто используемых схем выпрямителей переменного тока, исходя из (сглаженного) постоянного тока Id либо из фазного тока IL, значения которых приведены таблице 2.2.


При коротком замыкании ток предохранительной вставки (рис. 2.10) возрастает в течение времени плавления tS до тока короткого замыкания IC (пика тока плавления).


Таблица 2.2 Эффективное значение тока, протекающего через предохранитель

Схема выпрямителя переменного тока

Эффективное значение фазного тока (фазный предохранитель)

Эффективное значение тока от­ветвления (пре­дохранитель в ответвлении)

Однопульсная со средней точкой

Двухпульсная со средней точкой

Трехпульсная со средней точкой

Шестипульсная со средней точкой

Двойная трехфазная однополупериодная

со средней точкой (параллельная)

Двухпульсная мостовая схема

Шестипульсная мостовая схема

Однофазная двунаправленная схема

В течение времени гашения дуги tL образуется электрическая дуга и ток короткого замыкания гасится (рис. 2.10).


Интеграл квадратичного значения тока (∫l 2 dt) no всему времени срабатывания (tS + tL), кратко называемый полным джоулевым интегралом, определяет тепло, которое подводится к подлежащему защите полупроводниковому элементу во время процесса размыкания.


Чтобы достичь достаточного защитного эффекта, полный джоулев интеграл предохранительной вставки должен быть меньше чем величина I 2 ⋅t (интеграл предельной нагрузки) полупроводникового элемента. Так как полный джоулев интеграл предохранительной вставки с возрастающей температурой, а, следовательно, и с возрастающей предварительной нагрузкой, практически убывает так же, как и величина I 2 ⋅t полупроводникового элемента, то достаточно сравнить между собой величины I 2 ⋅t в ненагруженном (холодном) состоянии.



Рис. 2.10.


Полный джоулев интеграл (I 2 ⋅tA) представляет собой сумму интеграла плавления (I 2 ⋅tS) и интеграла дуги (I 2 ⋅tL). В общем случае, величина полного джоулевого интеграла полупроводникового прибора должна быть больше или равной величине защитного показателя предохранителя:


((∫I 2 t) (полупроводник, t = 25 °С, tP = 10 мс) ≥ ((∫I 2 ⋅tA) (предохранительная вставка).


Интеграл плавления I 2 ⋅tS может быть рассчитан для любых значений времени, исходя из пар значений времятоковой характеристики предохранительной вставки.


При уменьшении времени плавления интеграл плавления стремится к нижнему предельному значению, при котором во время процесса плавления из перемычек плавящегося проводника в окружающее пространство тепло практически не отводится. Указанные в данных для выбора и заказа и в характеристиках интегралы плавления соответствуют времени плавления tS = 1 мс. 


В то время как интеграл плавления I 2 ⋅tS является свойством предохранительной вставки, интеграл дуги I 2 ⋅tL зависит от характеристик электрической цепи, а именно:


От восстанавливающегося напряжения UW;


От коэффициента мощности cosф короткозамкнутой цепи;


От ожидаемого тока IP// (ток в месте установки предохранительной вставки, если она закорочена).


Максимум интеграла дуги достигается для каждого типа предохранителей при токе от 10⋅IР до 30⋅IР.


При защите сетей предохранителями типов ПН, НПН и НПР с заданными защитными характеристиками селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети (Iном Г, ПВ), и номинальным током плавкой вставки на ответвлении к потребителю (Iном О, ПВ) выдерживаются определенные соотношения.


Например, при небольших токах перегрузки плавкой вставки (около 180-250 %) селективность будет выдерживаться, если Iном Г, ПВ > Iном О, ПВ хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.


При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:


I(3)КЗ / Iном О, ПВ ≤ …50; 100; 200;


Iном Г, ПВ / Iном О, ПВ …2,0; 2,5; 3,3,


где I(3)КЗ - трехфазный ток короткого замыкания ответвления, А.


Соотношения между номинальными токами плавких вставок Iном Г, ПВ и Iном О, ПВ для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в таблице 2.3.


Если защитные характеристики плавких вставок неизвестны, рекомендуется метод проверки селективности по отношению сечений вставок с поправкой на материал вставки и конструкцию предохранителя. При этом определяются сечения плавких вставок последовательно включенных предохранителей (SK и SH); вычисляется отношение SП/SK и сравнивается с величиной SП/SK = а, обеспечивающей селективность.



SK - сечение вставки предохранителя, установленного ближе к месту короткого замыкания; SП - сечение вставки предохранителя, установленного ближе к источнику питания. 


Величина а определяется по таблице 2.4, если вычисленное значение Sn/SK ≥ а, то селективность обеспечивается.


Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.


Таблица 2.3 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность

Номинальный ток меньшей плавкой вставки Iном О, ПВ А

Номинальный ток большей плавкой вставки Iном Г, ПВ, А, при отношении I(3)КЗ / Iном О, ПВ

100 и более


Примечание. 1(3)КЗ - ток короткого замыкания в начале защищаемого участка сети.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.


Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.


Все электродвигатели разбиты на две группы по времени и частоте пуска. Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3-5 с, пускаются эти двигатели редко, менее 15 раз за 1 ч.


К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто - более 15 раз за 1 ч. К этой категории относят и двигатели с более легкими условиями пуска, но особо ответственные, для которых совершенно недопустимо ложное перегорание вставки при пуске.


Таблица 2.4 Отношение сечений вставок Sn/SK, обеспечивающее селективность

Металл плавкой вставки

Металл плавкой вставки предохранителя,

предохранителя, расположенного

расположенного ближе к месту к. з.

ближе к источнику питания

Предохранитель с наполнителем

Предохранитель без наполнителя

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по выражению:


Iном,ПВ ≥ I пус,ДВ / К, (2.4)


где Iпус, ДВ - пусковой ток двигателя, определяемый по паспорту, каталогам или непосредственным измерением; К - коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6-2.


Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она может ложно перегореть при нормальной работе двигателя. Вставка, выбранная в соответствии с (2.4), может сгореть также при


затянувшемся по сравнению с расчетным временем пуске или само- запуске двигателя.


Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.


Для предотвращения сгорания вставок при пуске, что может повлечь за собой работу двигателя на двух фазах и его повреждение, целесообразно во всех случаях, когда это допустимо по чувствительности к токам КЗ, выбирать вставки более грубые, чем по условию (2.1).


Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей


Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током и самозапуск двигателей, если он допустим по условиям техники безопасности, технологического процесса и т. п.


При расчете защиты необходимо точно определить, какие двигатели отключаются при понижении или полном исчезновении напряжения, какие остаются включенными, какие повторно включаются при появлении напряжения.


Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по выражению:


Iном, ПВ ≥ ∑Iпус, ДВ / К, (2.5)


где ∑Iпус, ДВ - сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей


В этом случае плавкие вставки предохранителей выбираются по следующему соотношению:


Iном, ПВ ≥ Imax, ТЛ / К, (2.6)


где Imax, ТЛ = Iпус, ДВ + Iдлит, ТЛ - максимальный кратковременный ток линии; Iпус, ДВ - пусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлит, ТЛ - длительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) - это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5-7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению (2.4), будет иметь номинальный ток в 2-3 раза больше номинального тока двигателя и, выдерживая этот ток неограниченное время, не может защитить двигатель от перегрузки. Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.


Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также условие предотвращения повреждения контактов пускателя.


Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя, он отпадает и разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения этого короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.


Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15-0,2 с; для этого ток короткого замыкания должен быть в 10-15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель, т. е.:


I(3)КЗ / Iном,ПВ ≥ 10–15. (2.7)

Защита предохранителями сетей до 1000 В от перегрузки


В ПУЭ 3.1.10 указаны сети напряжением до 1000 В, требующие, кроме защиты от коротких замыканий, защиты от перегрузки. К ним относятся:


1. Все сети, выполненные проложенными открыто незащищенными изолированными проводами с горючей оболочкой, внутри любых помещений.


2. Все осветительные сети независимо от конструкции и способа прокладки проводов или кабелей в жилых и общественных зданиях, в торговых помещениях, в служебно-бытовых помещениях промышленных предприятий, в пожароопасных производственных помещениях, все сети для питания бытовых и переносных электроприборов.


3. Все силовые сети в промышленных предприятиях, в жилых и общественных помещениях, если по условиям технологического процесса может возникнуть длительная перегрузка проводов и кабелей.


4. Все сети всех видов во взрывоопасных помещениях и взрывоопасных наружных (вне зданий) установках независимо от режима работы и назначения сети.


Номинальный ток плавкой вставки должен выбираться минимально возможным по условию надежного пропускания максимального тока нагрузки. Практически при постоянной, без толчков, нагрузке номинальный ток вставки 1ном, ПВ принимается примерно равным максимальному длительному току нагрузки Imax, ТН, а именно:


Iном, ПВ ≥ Imax, ТН. (2.8)


По номинальному току вставки определяется допустимый ток длительной нагрузки 1длит,ТН для проводника (проложенного в нормальных условиях), защищаемого выбранной вставкой:


kк⋅Iном, ПВ ≤ kп⋅Iдлит, ТН, (2.9)


где kк - коэффициент, который учитывает конструкцию защищаемых вставкой проводников, равный по ПУЭ 3.1.10 - 1,25 для проводников с резиновой и подобной горючей изоляцией, прокладываемых во всех помещениях, кроме невзрывоопасных производственных. Для любых проводников, прокладываемых в невзрывоопасных производственных помещениях, и кабелей с бумажной изоляцией в любых помещениях, kк = 1:


kп = kп1⋅kп2⋅kп3, (2-10)


где kп - общий поправочный коэффициент, соответствующий случаю, когда действительные условия прокладки отличаются от нормальных.


Если нагрузка имеет характер толчков, например, электродвигатель крана, и продолжительность нагрузки меньше 10 мин, то вводится поправочный коэффициент kп1. Этот коэффициент вводится для медных проводников сечением не менее 6 мм2 и алюминиевых не менее 10 мм2. Величина kп1 принимается по выражению


kп1 = 0,875/ √ПВ,


где ПВ - выраженная в относительных единицах продолжительность включения, равная отношению времени включения приемника, например электродвигателя, к полному времени цикла повторно кратковременного режима. Коэффициент кП1 вводится, если продолжительность включения не более 4 мин, а перерыв между включениями не менее 6 мин. В противном случае величина тока нагрузки принимается как для длительного режима.


Если температура окружающей среды отличается от нормальной, вводится поправочный коэффициент кП2, определяемый по таблицам ПУЭ.


При прокладке в одной траншее более одного кабеля вводится поправочный коэффициент кП3, определяемый также по таблицам ПУЭ.


В цепях вторичной коммутации (оперативного тока, контрольно-измерительных приборов, измерительных трансформаторов напряжения и др.) плавкие вставки выбирают по токам короткого замыкания исходя из условия:


I(3)КЗ / Iном,ПВ ≥ 10 (2.11)


Монтаж предохранителей производят на распределительных щитах и силовых пунктах. Плавкая вставка выполняется вертикально. После затяжки всех креплений проверяется соприкосновение контактов ножа или колпачка патрона и губками стоек. «Отпружинивание» контактных губок стоек при входе в них ножа или колпачка патрона должно быть заметно на глаз. Патроны предохранителей не должны выпадать из контактных стоек при приложении к ним усилия, равного для предохранителей, рассчитанных на ток: 40А - усилие 30Н; 100А - 40Н; 250А - 45Н; 400А - 50Н; 600А - 60Н.


Проверка предохранителей при новом включении проводится в следующем объеме:


1. Внешний осмотр, чистка, проверка контактных соединений.


2. Проверка правильности выбора номинального тока плавкой вставки.


В производственных условиях возникают причины, когда необходимо при отсутствии стандартной плавкой вставки заменять ее проводником, который по своим свойствам будет эквивалентен плавкой вставке.


В таблице 2.5 указаны сечения различных проводниковых материалов, пригодных для использования в качестве плавкой вставки предохранителя.

Выбор предохранителей для защиты полупроводниковых элементов


Предохранители для защиты полупроводниковых элементов вставки выбираются по расчетному напряжению, расчетному току, полному джоулевому интегралу I2⋅tA и коэффициенту нагрузочных циклов с учетом прочих заданных условий.


Расчетное напряжение Uр предохранительной вставки - это напряжение, приводимое в качестве эффективного значения переменного напряжения при формировании данных для заказа и проектирования, а также указываемое на самой предохранительной вставке.


Расчетное напряжение предохранительной вставки выбирается таким образом, чтобы она надежно отключала напряжение, возбуждающее короткое замыкание. Это напряжение не должно превышать значение Uр +10 %. При этом необходимо учитывать также тот факт, что напряжение питающей сети Uпc выпрямителя переменного тока может увеличиваться на 10 %. Если в короткозамкнутой цепи два ответвления схемы выпрямителя переменного тока расположены последовательно, то при достаточно большом токе короткого замыкания можно рассчитывать на равномерное распределение напряжения.


Таблица 2.5 Значение сечения проволоки для плавкой вставки предохранителя в зависимости от тока нагрузки

Величина тока, А

Свинец, мм2

Сплав, мм2: 75 % - свинец, 25 % - олово

Железо, мм2

Режим выпрямления . Для выпрямителей переменного тока, которые работают только в режиме выпрямления, в качестве возбуждающего напряжения выступает напряжение питающей сети Uпc.


Режим инвертирования . Для выпрямителей переменного тока, которые работают также и в режиме инвертирования, нарушение может быть вызвано опрокидыванием инвертора. При этом в качестве возбуждающего напряжения Uвн в короткозамкнутой цепи выступает сумма из питающего постоянного напряжения (например, электродвижущая сила машины постоянного тока) и напряжения трехфазного тока питающей сети. Эта сумма при подборе предохранительной вставки может быть заменена переменным напряжением, эффективное значение которого соответствует 1,8-кратному значению напряжения трехфазного тока питающей сети (Uвн=1,8Uпc). Предохранительные вставки должны рассчитываться таким образом, чтобы они надежно размыкали напряжение Uвн.


Расчетный ток, нагрузочная способность Iр предохранительной вставки - это ток, приводимый в данных для выбора и заказа, и характеристиках, а также указываемый на предохранительной вставке в качестве эффективного значения переменного тока для диапазона частот 45-62 Гц.


Для работы предохранительной вставки с расчетным током нормальными условиями эксплуатации являются:


Естественное воздушное охлаждение при температуре окружающей среды +45°С;


Поперечные сечения присоединений равны контрольным поперечным сечениям, при работе в основаниях предохранителей NH и разъединителях;


Угол отсечки тока полупериода составляет 120°;


Постоянная нагрузка максимальна при расчетном токе.


Для условий эксплуатации, отличающихся от перечисленных выше, допустимый рабочий ток Ip предохранительной вставки определяется по следующей формуле:


Ip = ku ⋅ kq ⋅ kл ⋅ ki ⋅ kwl ⋅ Ip, (2.12)


где Ip - расчетный ток предохранительной вставки;


ku - поправочный коэффициент температуры окружающей среды;


kq - поправочный коэффициент поперечного сечения присоединения;


kл - поправочный коэффициент угла отсечки тока;


ki - поправочный коэффициент интенсивного воздушного охлаждения;


kwl - коэффициент нагрузочных циклов.


Коэффициент нагрузочных циклов kwl - это понижающий коэффициент, при помощи которого может быть определена не изменяющаяся с течением времени нагрузочная способность предохранительных вставок при любых нагрузочных циклах. Предохранительные вставки имеют различные коэффициенты нагрузочных циклов, обусловленные конструкцией. В характеристиках предохранительных вставок указывается соответствующий коэффициент нагрузочных циклов kwl для > 10 000 изменений нагрузки (1 час «Вкл», 1 час «Откл») в течение ожидаемого срока службы предохранительных вставок.


При равномерной нагрузке (отсутствуют нагрузочные циклы и отключения) можно принять коэффициент нагрузочных циклов kwl = 1. При нагрузочных циклах и отключениях, которые длятся более, чем 5 мин и осуществляются чаще чем один раз в неделю, следует выбирать коэффициент нагрузочных циклов kwl, указанный в характеристиках отдельных предохранительных вставок фирм производителей.


Остаточный коэффициент - krw.


Предварительная нагрузка предохранительной вставки сокращает продолжительность допустимой перегрузки и времени плавления. При помощи остаточного коэффициента krw можно определить время, на протяжении которого предохранительная вставка при периодическом или непериодическом нагрузочном цикле сверх предварительно рассчитанного допустимого тока нагрузки Ip может работать с любым током перегрузки Ila без потери первоначальных свойств с течением времени.


Остаточный коэффициент kRW зависит от предварительной нагрузки V= Ieff/Ip - (отношения эффективного значения тока Ieff, протекающего через предохранитель во время нагрузочного цикла, к допустимому току нагрузки Ip), а также от частоты перегрузок F. Графически указанная зависимость представляется двумя кривыми (рис. 2.11): kRW1 = f (V), при F = частые ударные токи / токи нагрузочного цикла > 1/ неделю; kRW2 = f (V), при F = редкие ударные токи / токи нагрузочного цикла

После определения графическим способом коэффициента kRW1 (kRW2) можно определить сокращенную продолжительность допустимой нагрузки tsc по выражению:


tsc = kRW1 (kRW2) ⋅ ts


Уменьшение времени плавления предохранительной вставки tsy при предварительной нагрузке определяется по вычисленному значению V при помощи заданной кривой kR3 = f (V) (рис. 2.11) по выражению:


tsy = kR3 ⋅ ts


Рис. 2.11.

Выпрямители переменного тока работают часто не с непрерывной, а с переменными нагрузками, которые могут также кратковременно превышать расчетный ток выпрямителя переменного тока.


Для случая переменной нагрузки классифицированы четыре типичных вида нагрузки для не изменяющегося с течением времени режима работы предохранительных вставок:


Неизвестная переменная нагрузка, однако с известным максимальным током (рис. 2.13);


Переменная нагрузка с известным нагрузочным циклом (рис. 2.14);


Случайная ударная нагрузка из предварительной нагрузки с неизвестной последовательностью ударных импульсов (рис. 2.15).


Определение требуемого расчетного тока IP предохранительной вставки для каждого из четырех видов нагрузки осуществляется в два этапа:


1. Определение расчетного тока IP на основе эффективного значения Ieff тока нагрузки:


IР > Ieff ⋅(1/ ku ⋅ kq ⋅ kл ⋅ ki ⋅ k). (2.13)


2. Проверка допустимой продолжительности перегрузки блоками тока, которые превышают допустимый рабочий ток предохранителя IP/, с использованием выражения:


kRW ⋅ ts ≥ tk, (2.14)


где tK - продолжительность перегрузки.


Если полученная продолжительность перегрузки окажется меньшей, чем соответствующая требуемая продолжительность перегрузки, то следует выбрать предохранительную вставку с более высоким расчетным током Ip (с учетом расчетного напряжения Up и допустимого полного джоулевого интеграла) и повторить проверку.


Пример выбора предохранителя

Плавкий предохранитель - компонент силовой электроники одноразового действия, выполняющий защитную функцию. Плавкий предохранитель является самым слабым участком защищаемой электрической цепи, срабатывающим в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение более ценных элементов электрической цепи высокой температурой, вызванной чрезмерными значениями силы тока.

В электрической цепи плавкий предохранитель является слабым участком электрической цепи, сгорающий в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение высокой температурой.

Плавкие предохранители делятся на следующие типы:

1. слаботочные вставки (для защиты небольших электроприборов до 6 ампер)

  • 3х15 (первая цифра означает внешний диаметр, вторая - длину вставки)
  • 10х30

2. вилочные (для защиты электрических цепей автомобилей)

  • миниатюрные
  • обычные вилочные

3. пробковые (встречаются в жилом секторе, до 63 ампер)

  • DIAZED (самые распространённые в СССР)
  • NEOZED

4. ножевые (до 1250 ампер)

  • типоразмер 000 (до 100 ампер)
  • типоразмер 00 (до 160 ампер)
  • типоразмер 0 (до 250 ампер)
  • типоразмер 1 (до 355 ампер)
  • типоразмер 2 (до 500 ампер)
  • типоразмер 3 (до 800 ампер)
  • типоразмер 4а (до 1250 ампер)

5. кварцевые

6. газогенерирующие

Так же плавкие предохранители различаются по характеристике срабатывания относительно номинального тока. Из-за инертности срабатывания плавких предохранителей, в профессиональной среде электриков они довольно часто используются в качестве селективной защиты в паре с автоматическими выключателями. Селективности между самими плавкими вставками добиваются соотношением 1:1,6 [там же], время-токовая характеристика плавких предохранителей устанавливается зависимостью соответственно I²t ; ПУЭ регулирует защиту воздушных проводящих линий таким образом, чтобы предохранитель срабатывал за 15 секунд (ток короткого замыкания в конце линии должен быть равен трём номинальным токам предохранителя). Существенной величиной является время, за которое происходит разрушение проводника при превышении установленного тока. С целью уменьшения этого времени некоторые плавкие предохранители содержат пружину предварительного натяжения. Эта пружина также разводит концы разрушенного проводника, предотвращая возникновение дуги.

40-амперные предохранители с характеристикой срабатывания "gG", равносильные советской характеристике "ППН"

  • плавкая вставка - элемент содержащий разрывную часть электрической цепи (например проволоку, перегорающую при превышении определённого уровня тока)
  • механизм крепления плавкой вставки к контактам, обеспечивающим включение предохранителя в электрическую цепь и монтаж предохранителя в целом.

Корпуса плавких предохранителей обычно изготавливаются из высокопрочных сортов специальной керамики (фарфор, стеатит или корундо-муллитовая керамика). Для корпусов предохранителей с малыми номинальными токами используются специальные стекла. Корпус плавкой вставки обычно выполняет роль базовой детали, на которой укреплен плавкий элемент с контактами плавкой вставки, указатель срабатывания, свободные контакты, устройства для оперирования плавкой вставкой и табличка с номинальными данными. Одновременно корпус выполняет функции камеры гашения электрической дуги.


Маркировка плавких предохранителей

Первая буква означает диапазон защиты:

  • a - частичный диапазон (только защита от токов короткого замыкания)
  • g - полный диапазон (защита и от токов короткого замыкания, и от перегрузки)
  • h - высокая разбивная способность (трубки сделаны из белой или серой керамики)

Вторая буква означает тип защищаемого оборудования:

  • G - универсальный предохранитель для защиты различных типов оборудования: кабелей, электродвигателей, трансформаторов
  • L - защита кабелей и распределительных устройств
  • B - защита горного оборудования
  • F - защита маломощных цепей
  • M - защита цепей электродвигателей и отключающих устройств
  • R - защита полупроводников
  • S - быстрое сгорание при коротком замыкании и среднее время сгорания при перегрузке
  • Tr - защита трансформаторов

Предохранитель - это коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи разрушением специально предусмотренных для этого токоведущих частей под дей­ствием тока, превышающего определенное значение.

В плавких предохранителях отключение цепи происходит за счет расплавления плавкой вставки, которая нагревается протекаю­щим через нее током защищаемой цепи. После отключения цепи не­обходимо заменить плавкую вставку исправной.

Предохранитель включается последовательно в защищаемую цепь, а для создания видимого разрыва электрической цепи и безо­пасного обслуживания совместно с предохранителями применяются неавтоматические выключатели или рубильники.

Предохранители изготавливаются на напряжение переменного тока 42, 220, 380, 660 В и постоянного тока 24, 110, 220, 440 В.

Основными элементами предохранителя являются корпус, плав­кая вставка (плавкий элемент), контактная часть, дугогасительное устройство и дугогасительная среда.

Предохранители характеризуются номинальным током плавкой вставки, т. е. током, на который рассчитана плавкая вставка для дли­тельной работы. В один и тот же корпус предохранителя могут быть вставлены сменные плавкие элементы на различные номинальные то­ки, поэтому сам предохранитель характеризуется номинальным током


предохранителя (основания), который равен наибольшему из номи­нальных токов плавких вставок, предназначенных для данной конст­рукции предохранителя. Например, предохранители серии ПН2 и ПР2 имеют сменные плавкие вставки. Так предохранитель серии ПН2-100 имеет корпус, рассчитанный на ток до 100 А и сменные плавкие вставки на токи 30, 40, 50, 60, 80, 100 А.

Предохранители до 1 кВ изготавливаются на номинальные токи до 1000 А.

В нормальном режиме тепло, выделяемое током нагрузки в плавкой вставке, передается в окружающую среду, и температура всех частей предохранителя не превышает допустимую. При пере­грузке или КЗ температура вставки увеличивается и она расплавляет­ся. Чем больше протекающий ток, тем меньше время плавления. За­висимость времени плавления плавкой вставки от величины тока (кратности тока срабатывания по отношению к номинальному току плавкой вставки) называется защитной (время - токовой) характери­стикой предохранителя (рис. 3.1.). При одном и том же токе время плавления плавкой вставки зависит от многих причин (материала вставки, состояния ее поверхности, условий охлаждения и т. д.). Что­бы уменьшить время срабатывания предохранителя, применяются плавкие вставки из разного материала, специальной формы, а также используется металлургический эффект.

Наиболее распространенными материалами плавких вставок яв­ляются медь, цинк, алюминий, свинец и серебро.

Медные вставки подвержены окислению, их сечение со време­нем уменьшается и защитная характеристика предохранителя изменя­ется. Для уменьшения окисления обычно применяют луженые мед­ные вставки. Температура плавления меди 1080 °С, поэтому при токах, близких к минимальному току плавления, температура всех элементов предохранителя значительно возрастает.

Цинк и свинец имеют низкую температуру плавления (419 °С и 327 °С), что обеспечивает небольшой нагрев предохранителей в продолжительном режиме.

Цинк стоек к коррозии, поэтому сечение плавкой вставки не ме­няется во время эксплуатации, защитная характеристика остается по­стоянной. Цинк и свинец имеют большие удельные сопротивления, поэтому плавкие вставки оказываются большого сечения. Такие плав­кие вставки обычно применяются в предохранителях без наполните­лей. Предохранители со вставками из цинка и свинца имеют большие выдержки времени при перегрузках.


Рис. 3.1. Время-токовая характеристика плавкого предохранителя

Серебряные вставки не окисляются, и их характеристики наибо­лее стабильны.

Алюминиевые вставки применяются в предохранителях в связи с дефицитом цветных металлов. Высокое сопротивление окисных пленок на алюминии затрудняет осуществление надежного разъемно­го контакта. Алюминиевые вставки находят применение в новых кон­струкциях предохранителей серии ПП31.

При больших токах плавкие вставки предохранителей выпол­няются из параллельных проволок или тонких медных полос.

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 1.1) во всех точках шла немного ниже характеристики защищае­мой цепи или объекта (кривая 2 на рис. 3.1). Однако ре­альная характеристика предохранителя (кривая 3) пересе­кает кривую 2. Поясним это. Если характеристика предо­хранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. По­этому ток плавления вставки выбирается больше номи­нального тока нагрузки. При этом кривые 2 и 3 пересека­ются. В области больших перегрузок (область Б) предо­хранитель защищает объект. В области А предохранитель объект не защищает.

При небольших перегрузках (l,5–2) I H 0 M нагрев предо­хранителя протекает медленно. Большая часть тепла отда­ется окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая встав­ка сгорает при достижении ею уста­новившейся температуры, называет­ся пограничным током I ПОГР.

Для ускорения плавления вставок из меди и серебра используется металлургический эффект - явление растворения тугоплавких металлов в расплавленных, менее тугоплавких. Если, например, на медную про­волоку диаметром 0,25 мм напаять шарик из оловянно-свинцового сплава с температурой плавления 182 °С, то при температуре проволоки 650 °С она расплавится в течение 4 мин, а при 350 °С - в течение 40 минут. Та же проволока без растворителя плавится при температуре не менее 1000 °С . Для создания металлургического эффекта на мед­ных и серебряных вставках применяют чистое олово, обладающее более стабильными свойствами. В нормальном режиме работы шарик практи­чески не влияет на температуру вставки.


Рис 3.2. Плавкий предохранитель серии ПР2: а - патрон; б - формы плавких вставок

Ускорение плавления вставки достигается также применением плавкой вставки специальной формы (рис. 3.2, б). При токах КЗ узкие участки нагреваются настолько быстро, что отвод тепла почти не происходит. Вставка перегорает одновременно в нескольких сужен­ных местах (сечение А - А и В - В, рис. 3.2, б) прежде, чем ток КЗ достигнет своего установившегося значения в цепи постоянного тока или ударного тока в цепи переменного тока (рис. 3.3).

Рис. 3.3. Токоограничивающий эффект плавких вставок

предохранителей: а - при постоянном токе;

б - при переменном токе

Ток КЗ при этом ограничивается до значения i огр (в 2-5 раз). Та­кое явление называется токоограничивающим действием и улучшает условия дугогашения в предохранителях.

Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно осуществляться в возможно короткое время. Время гашения дуги зависит от конструкции предохранителя.


Наибольший ток, который плавкий предохранитель может от­ключать без каких-либо повреждений или деформаций, называется предельным током отключения.

Предохранители получили широкое применение для защиты электродвигателей, электрооборудования, электрических сетей в про­мышленных, бытовых электроустановках и имеют различную конст­рукцию.

Плавкие предохранители наряду с простотой их устройства и малой стоимостью имеют ряд существенных недостатков:

Не могут защитить линию от перегрузки, так как допускают
длительную перегрузку до момента плавления;

Не всегда обеспечивают избирательную защиту в сети вслед­
ствие разброса их характеристик;

При коротком замыкании в трехфазной сети возможно сраба­
тывание одного из трех предохранителей и линия остается работать
на двух фазах.

В этом случае трехфазные электродвигатели, подключенные к сети, оказываются включенными на две фазы, а это приводит к пе­регреву обмоток электродвигателей и их выходу из строя.

Предохранители с закрытыми разборными корпусами (патрона­ми) без наполнителя серии ПР2 (рис. 3.2) изготавливаются на напря­жение 220 и 500 В и номинальные токи 100-1000 А. Патрон предо­хранителя ПР2 (рис. 3.2, а) на токи 100 А и выше состоит из толстостенной фибровой трубки 1, на которую плотно насажены ла­тунные втулки 3, имеющие мелкую резьбу. На трубки навинчиваются латунные колпачки 4, которые закрепляют плавкую вставку 2, при­винченную к ножам 6, до установки ее в патрон. В предохранителях этой серии предусмотрена шайба 5, имеющая паз для ножа и предот­вращающая поворот ножей.

Патрон вставляется в неподвижные контактные стойки, укреп­ленные на изоляционной плите. Необходимое контактное нажатие обеспечивается пружинами.

Плавкие вставки изготавливаются из цинка в виде пластины с вырезами. На суженных участках выделяется больше тепла, чем на широких. При номинальном токе избыточное тепло благодаря тепло­проводности цинка передается широким частям, поэтому вся вставка имеет примерно одинаковую температуру. При перегрузках нагрев узких участков происходит быстрее, и вставка плавится в самом горя­чем месте (сечение А - А, рис. 3.2, б).


При КЗ вставка плавится в узких сечениях А - А и В - В. Воз­никающая дуга вызывает образование газов (50 % СО 2 , 40 % Н 2 , 10 % паров Н 2 О), так как стенки патрона выполнены из газогенери-рующего материала - фибры. Давление в зависимости от отключае­мого тока может достигать 10 МПа и более, что обеспечивает быстрое гашение дуги и токоограничивающее действие предохранителя. Для уменьшения возникающего при отключении тока КЗ перенапряжения плавкая вставка имеет несколько суженных мест. При их поочеред­ном плавлении полная длина дугового промежутка вводится в цепь не сразу, а ступенями.

Предохранители насыпные серии ПН2 (рис. 3.4) широко приме­няются для защиты силовых цепей до 500 В переменного и 440 В по­стоянного тока и выпускаются на номинальные токи 100-1000 А.


1 2

Рис. 3.4. Плавкий предохранитель серии ПН2

Фарфоровая, квадратная снаружи и круглая внутри, трубка 1 имеет четыре резьбовых отверстия для винтов, с помощью которых крепится крышка 4 с уплотняющей прокладкой 5. Плавкая вставка 2 приварена электроконтактной точечной сваркой к шайбам контакт­ных ножей 3. Крышки с асбестовыми прокладками герметически за­крывают трубку. Трубка заполнена сухим кварцевым песком 6. Плав­кая вставка выполнена из одной или нескольких медных ленточек толщиной 0,15-0,35 мм и шириной до 4 мм. На вставке сделаны про­рези 7, уменьшающие сечение вставки в 2 раза. Для снижения темпе­ратуры плавления вставки используется металлургический эффект -на полоски меди напаяны шарики олова 8, температура плавления в этом случае не превышает 475 °С, дуга возникает в нескольких па­раллельных каналах (в соответствии с числом вставок); это обеспечи­вает наименьшее количество паров металла в канале между зернами кварца и наилучшие условия гашения дуги в узкой щели. Насыпные


предохранители, так же как предохранители серии ПР2, обладают то-коограничивающим свойством.

Для уменьшения возникающих перенапряжений плавкая вставка имеет по длине прорези, причем их количество зависит от номиналь­ного напряжения предохранителя (из расчета 100-150 В на участок между прорезями). Так как вставка сгорает в узких местах, то длинная дуга оказывается разделенной на ряд коротких дуг, суммарное на­пряжение, которых не превышает суммы катодных и анодных паде­ний напряжения .

Наполнителем в предохранителях серии ПН является чистый кварцевый песок (99 % SiO2). Вместо кварца может быть применен мел (СаСО3), иногда его смешивают с асбестовым волокном. При возникновении дуги мел разлагается с выделением углекислого газа СО 2 и СаО - тугоплавкого материала. Реакция происходит с погла-щением энергии, что способствует гашению дуги.

Предельный отключаемый ток предохранителей серии ПН2 дос­тигает 50 кА.

Насыпные предохранители серии НПН имеют неразборный стеклянный патрон без контактных ножей и рассчитаны на токи до 60 А.

Взамен предохранителей ПН2 разработаны предохранители серии ПП-31 с алюминиевыми вставками на номинальные токи 63-1000 А и имеющие предельный ток отключения до 100 кА при напряжении 660 В.

Предохранители серии ПП-17 изготавливаются на токи 500-1000 А, напряжение переменного тока 380 В и постоянного тока 220 В. Предель­ная отключающая способность предохранителей ПП-17 100-120 кА. Предохранитель состоит из плавкого элемента, помещенного в кера­мический корпус, заполненный кварцевым песком, указателя сраба­тывания и свободного контакта. При расплавлении плавкого элемента предохранителя перегорает плавкий элемент указателя срабатывания, освобождая введенный при сборке указателя боек, который переклю­чает свободный контакт, и замыкается цепь сигнализации срабатыва­ния предохранителя.

Для защиты полупроводниковых приборов разработаны быст­родействующие предохранители серии ПП-41, ПП-57, ПП-59, ПП-71. Эти предохранители выполняются с плавкими вставками из серебря­ной фольги в закрытых патронах с засыпкой кварцевым песком. Они рассчитаны на установку в цепях переменного тока напряжением


380-1250 В и постоянного тока 230-1050 В. Электротехническая промышленность изготавливает предохранители на номинальные то­ки 100-2000 А, предельные токи отключения до 200 кА. Эти предо­хранители обладают эффективным токоограничивающим действием.

В схемах управления станков, механизмов, машин, а также в системах электроснабжения жилых и общественных зданий широко применяются пробочные плавкие предохранители серии ПРС. Номи­нальный ток корпуса 6; 25; 63; 100 А.

Корпус плавких вставок предохранителей изготавливают из высокопрочных сортов специальной керамики (фарфор, стеатит или корундомуллитовая керамика) для обеспечения их высокой разрывной способности. Некоторые зарубежные фирмы (США, Япония) корпуса для предохранителей выполняют из стеклоткани, пропитанной кремнийорганической смолой. Анализ механических стволов литьевых смол подтверждает, что они могут быть использованы для изготовления корпусов предохранителей. Прочность на растяжение изготовленных таким образом корпусов выше прочности аналогичного по размеру корпуса из керамики со стальными крышами. Основным фактором, препятствующим применению смол, является их старение при повышенных температурах. При температуре корпуса, не превышающей 30 0 С, не обнаруживается старения, но при более высокой температуре механические и электрические свойства смол со временем ухудшаются. В связи с тем, что возможны значительные перегревы корпуса предохранителя как в номинальном режиме (до 120 0 С), так и в области токовых перегрузок, применение изоляционных смол для изготовления корпусов и других элементов конструкции предохранителей станет возможным только после создания литьевых смол с достаточно большой термической стойкостью в различных режимах работы предохранителей.

Фирма «Фриц Дришер» (ФРГ) изготовила предохранители с шарообразным корпусом из эпоксидной смолы, что значительно упростило массовое производство предохранителей. Для повышения механической прочности в эпоксидную смолу добавляют волокнистый материал. В таком предохранителе отсутствуют резьбовые соединения. Эти предохранители влагонепроницаемы. Но такие предохранители предназначены только для отключения больших токов короткого замыкания, поскольку при малых токовых перегрузках возникают недопустимые перегревы корпуса из смолы.

Для корпусов предохранителей с малыми номинальными токами обычно используются специальные стекла.

КОНСТРУКЦИЯ ПЛАВКИХ ЭЛЕМЕНТОВ.

Все разновидности плавких элементов можно разделить на две группы: постоянного по длине плавкого элемента поперечного сечения и переменного. Плавкие элементы постоянного сечения обычно изготавливают из проволоки, а плавкие элементы переменного сечения – из металлической фольги или тонкой металлической пленки.

Отношение поперечного сечения широкой части плавкого элемента к поперечному сечению узкого перешейка определяет вид защитной характеристики. Например, для быстродействующих предохранителей обычно используются плавкие элементы с отношением более пяти. Характеристики для инерционных и нормально действующих предохранителей получаются при отношении менее пяти.

Плавкие элементы постоянного сечения обычно имеют плотность тока намного меньше, чем в плавких элементах переменного сечения. При срабатывании предохранители с плавкими элементами постоянного сечения имеют большие значения тока плавления и интеграла плавления, большие перенапряжения, но длительность горения дуги и отношения максимального значения пропускаемого тока к току плавления в этих предохранителях существенно меньше.

С повышением номинального напряжения предохранителя в плавких элементах переменного сечения увеличивается число последовательно соединенных узких перешейков, что необходимо для того, чтобы при срабатывании предохранителей на каждом перешейке загоралась отдельная дуга. В результате увеличения числа последовательно горящих дуг происходит более быстрое нарастание напряжения на предохранителе, чем в тех случаях, когда плавкий элемент имеет только один узкий перешеек.

Создание нескольких относительно узких параллельных каналов горения электрической дуги улучшает условия ее гашения за счет использования большего количества материалов наполнителя и уменьшения тока в каждой из параллельных дуг, поэтому при конструировании плавкие элементы предпочитают делить на ряд параллельных ветвей. Число параллельных ветвей ограничивается технологическими трудностями изготовления узких перешейков малых размеров.

Температура плавких элементов в различных режимах работы предохранителей изменяется в значительных пределах. Вследствие этого происходит большее или меньшее удлинение плавкого элемента. Некоторый разброс размеров корпусов плавких вставок приводит также к разбросу длин плавких элементов от предохранителя к предохранителю, поэтому в плавких элементах предусматривают по длине несколько изгибов, компенсирующих разницу в длинах корпуса и плавкого элемента в результате воздействия различных факторов.

Качество предохранителей в значительной степени зависит от значений переходных электрических сопротивлений. Как показали исследования, при плохом контактном соединении плавкого элемента с контактами плавкой вставки переходное сопротивление может достигать 50% электрического сопротивления плавкого элемента. Из-за этого предохранители перегреваются в номинальном режиме работы, сокращается их срок службы. Кроме того, при плохом контактном соединении нарушается воспроизводимость результатов испытаний от одного образца к другому. Все плавкие элементы предохранителей с большими номинальными токами присоединяются к контактным выводам сваркой, обеспечивающей хорошее качество контактного соединения. Для предохранителей с малыми номинальными токами используется иногда пайка мягкими припоями, но чаще механическое обжатие. В разборных предохранителях плавкий элемент соединяется с выводами плавкой вставки болтовым зажимом.

КОНСТРУКЦИЯ УКАЗАТЕЛЕЙ СРАБАТЫВАНИЯ ПЛАВКИХ ВСТАВОК

Плавкие элементы современных предохранителей находятся внутри непрозрачного корпуса, и состояние плавкого элемента визуально определить невозможно. Особенно важно иметь представление о состоянии плавкого элемента для предохранителей с большими номинальными токами из-за значительных трудностей, связанных с установкой и снятием предохранителя. В связи с этим применяются различного типа указатели, которые показывают, перегорел ли плавкий элемент предохранителя.

Имеется большое количество патентов на конструкции указателей. Наиболее широкое применение получил указатель срабатывания, использующий тот же принцип, что и основной плавкий элемент, - расплавление под действием сверхтока. Для создания такого указателя тонкая металлическая проволока с достаточной механической прочностью на растяжение электрически присоединяется параллельно основному плавкому элементу. При протекании через предохранитель сверхтока перегорают основной плавкий элемент и проволочка указателя. Проволочка указателя срабатывания закрепляется с одной стороны наглухо, а с другой подсоединяется к штифту, который подтягивается с помощью пружины в специальное отверстие. Проволочка указателя срабатывания находится в кварцевом песке. Ее длина обычно приблизительно равна длине плавкого элемента, что необходимо для надежного гашения дуги при номинальном напряжении предохранителя.

Указатели срабатывания такого типа изготавливаются двух видов: автономные – в виде небольшой плавкой вставки с высокоомным плавким элементом и наполнителем, устанавливаемые в собственном корпусе вне плавкой вставки и встроенные в корпус плавкой вставки. Автономные указатели срабатывания иногда крепятся непосредственно на плавкой вставке, а иногда устанавливаются совсем в стороне от предохранителя, имея с ним только электрическую связь. Последнее характерно для предохранителей фирмы «Инглиш электрик» (Великобритания).

После перегорания проволочки указателя срабатывания освобождается пружина, которая выталкивает штифт, окрашенный в яркий цвет и являющийся визуальным указателем того, что предохранитель перегорел. Иногда штифт служит и бойком, воздействующим на вспомогательные контакты предохранителя. В результате этого сигнал о срабатывании предохранителя передается на соответствующие органы управления.

В зависимости от соотношения электрических сопротивлений и теплофизических параметров основного плавкого элемента и указателя при срабатывании предохранителя могут наблюдаться три различных случая:

1) первоначальное расплавление основного плавкого элемента, горение дуги на нем. Активное сопротивление указателя шунтирует дугу основного плавкого элемента, способствуя снижению скорости нарастания напряжения на промежутке и снижению пика напряжения;

2) первоначальное расплавление проволоки указателя, а затем расплавление основного плавкого элемента. В связи с тем, что основной плавкий элемент имеет малое активное сопротивление, он будет шунтировать промежуток, образовавшийся после расплавления проволоки указателя, и препятствовать сколько-нибудь длительному горению дуги в указателе;

3) почти одновременное расплавление основного плавкого элемента и проволоки указателя срабатывания. Горение дуги на указателе может происходить до конца горения дуги на основном плавком элементе в одних случаях, а в других – горение дуги на указателе прекратится намного раньше, чем в основном плавком элементе

К сожалению, указатели рассматриваемого типа обладают нестабильностью срабатывания. При малых напряжениях и при малых токовых перегрузках проволока перегорает на небольшом участке. Если этот участок находится на большом расстоянии от пружины и если плотность упаковки песчаного наполнителя в корпусе указателя большая, силы трения проволоки о песчаный наполнитель могут превысить силу упругости пружины и указатель срабатывания может не сработать. Недостатком этих указателей является также то, что при случайном механическом обрыве плавкого элемента в процессе сборки или по какой-либо другой причине указатель срабатывания не показывает действительное состояние предохранителя без включения напряжения.

В качестве визуальных указателей срабатывания используют также газоразрядные лампы и светодиоды, включенные параллельно плавкой вставке. Но стоимость таких указателей срабатывания выше, а надежность их в работе ниже, чем у описанных выше указателей срабатывания.

ЗАКРЫТЫЕ ПРЕДОХРАНИТЕЛИ

Закрытые предохранители обычно выполняются в виде фибровой трубки, закрытой с концов латунными колпаками. Внутри трубки плавкие вставки. Образующаяся при сгорании вставки электрическая дуга горит в закрытом объеме. При горении дуги стенки выделяют газ, давление в трубке повышается, дуга гаснет.

Закрытые предохранители серии ПР-2 (разборные) имеют номинальные токи от 100А до 1000 А, предельные отключаемые токи при напряжении 380В и cosj³0.4 составляют от 6 кА до 20 кА. Вставки в основном с перешейками.

ПРЕДОХРАНИТЕЛИ С НАПОЛНИТЕЛЕМ (ЗАСЫПНЫЕ)

Плавкие вставки размещаются в среде мелкозернистого твердого наполнителя (например: мел, кварцевый песок), помещающегося в фарфоровом или пластмассовом корпусе. Возникающая при плавлении вставок электрическая дуга тесно соприкасается с мелкими зернами наполнителя, интенсивно охлаждается, деионизируется и поэтому быстро гасится.

Засыпные предохранители серии ПН-2 имеют номинальные токи от 100 А до 600 А, предельный отключающий ток при напряжении 500 В () находится в пределах от 25 кА до 50 кА. Серии ПП31 на номинальные токи от 63 А до 1000 А, предельный ток отключения до 100 кА при напряжении 660 В.

В таких предохранителях применяют параллельные вставки, что позволяет при том же суммарном поперечном сечении вставок получить большую поверхность охлаждения.

ИНЕРЦИОННЫE ПРЕДОХРАНИТЕЛИ

Характеристика на участке б-в обеспечивается нормальной вставкой увеличенного сечения, а на участке а-б другим элементом.

Серия ИП на напряжение 30 В и токи от 5 А до 250 А.

ЖИДКОМЕТАЛЛИЧЕСКИЕ – ток до 250 кА при напряжении 450 В переменного тока. Предохранители работают многократно с большим токоограничением. (Устройство рассмотрите самостоятельно; Чунихин, стр. 514-515).

БЫСТРОДЕЙСТВУЮЩИЕ ДЛЯ ЗАЩИТЫ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ. ПП-57 на номинальные токи (40-800) А, ПП-59 на номинальные токи (250-2000) А. Номинальные напряжения составляют до 1250 В переменного и 1050 В постоянного тока.

БЛОК ПРЕДОХРАНИТЕЛЬ-ВЫКЛЮЧАТЕЛЬ . БПВ номинальный ток до 350 А при переменном напряжении до 550 В.

ВЫБОР ПРЕДОХРАНИТЕЛЕЙ

Предохранители выбирают

1. по условию пуска и длительной эксплуатации;

2. по условию селективности.

1 В процессе длительной эксплуатации температура нагрева предохранителя не должна превосходить допустимых значений. В этом случае обеспечивается стабильность времятоковых характеристик предохранителя. Для выполнения этого требования необходимо, чтобы патрон и плавкая вставка выбирались на номинальный ток, равный или несколько больший номинального тока защищаемой установки.

Предохранитель не должен отключать установку при перегрузках, которые являются эксплуатационными (так, пусковой ток асинхронного двигателя с короткозамкнутым ротором может достигать семикратного значения номинального тока. По мере разгона пусковой ток падает до значения, равного номинальному току двигателя. Длительность пуска зависит от характера нагрузки).

Для двигателей с легкими условиями пуска (двигатели насосов, вентиляторов, станков)

,т.е. номинальный ток вставки выбирается по пусковому току нагрузки.

Для тяжелых условий пуска, когда двигатель медленно разворачивается (привод центрифуги, краны, дробилки), или в повторно-кратковременном режиме, когда пуски проходят с большой частотой, вставки выбирают с еще большим запасом


Если предохранитель стоит в линии, питающей несколько двигателей, плавкая вставка выбирается по формуле:

где – расчетный номинальный ток линии, равный .

Разность берется для двигателя, у которого она наибольшая.

Для сварочных трансформаторов условия выбора предохранителя следующие: ,где ПВ – продолжительность включения.

2 Выбор предохранителей по условию селективности.

Между источником энергии и потребителем обычно устанавливается несколько предохранителей, которые должны отключать поврежденные участки по возможности селективно.

Предохранитель , пропускающий больший номинальный ток, имеет вставку большего сечения, чем предохранитель , установленный у одного из потребителей.

При КЗ необходимо, чтобы повреждение отключалось предохранителем, расположенным у места повреждения. Все остальные предохранители, расположенные ближе к источнику, должны остаться работоспособными. Такая согласованность работы предохранителей называется избирательностью или селективностью.Для обеспечения селективности полное время работы () предохранителя должно быть меньше времени нагрева предохранителя до температуры плавления его вставки, т.е.t пл1 ³t р2 .Для обеспечения селективности наименьшее фактическое время срабатывания предохранителя (на больший ток) должно быть больше наибольшего времени срабатывания предохранителя (на меньший номинальный ток): ,где и - время срабатывания предохранителя на больший и меньший номинальные токи, соответствующие номинальной характеристике.

Время срабатывания предохранителя из-за производственных допусков может отклоняться от номинального на . Тогда приведенное неравенство можно записать в виде .Множители 0,5 и 1,5 учитывают, что предохранитель взят с отрицательным допуском по времени срабатывания, а предохранитель - с положительным. В результате получим необходимое условие селективности: ,т.е. для селективной работы время срабатывания предохранителя на больший ток должно быть в 3 раза больше, чем у предохранителя на меньший ток.Для однотипных предохранителей для проверки селективности достаточно проверить при наибольшем токе вставку с меньшим номинальным током.

Для разнотипных предохранителей проверка селективности производится по всему диапазону токов: от 3 х фазного КЗ в конце защищаемого участка до номин ального тока плавкой вставки.

10 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ (АВТОМАТЫ)

Автоматические выключатели , как правило, предназначаются для отключения поврежденного участка сети при возникновении в нем аварийного режима (короткое замыкание, ток перегрузки, пониженное напряжение). Термическое и электродинамическое (при коротком замыкании) воздействия повышенных токов могут привести к выходу из строя электрооборудования. В условиях пониженного напряжения, если механический момент нагрузки на валу остается неизменными, через работающие двигатели также будет протекать повышенный ток.

Автомат в отличие от контактора имеет узел элементов защиты, автоматически обнаруживающий появление в сети ненормальных условий и дающий сигнал на отключение. Если контактор рассчитывается лишь на отключение токов перегрузки, которые достигают нескольких тысяч ампер, то автомат должен отключать токи короткого замыкания, достигающие многих десятков и даже сотен килоампер. Кроме того, автомат редко отключает электрическую цепь, в то время как контактор предназначается для частых оперативных коммутаций номинальных токов нагрузки.

Различают несколько разновидностей автоматов: универсальные (работают на постоянном и переменном токе), установочные (предназначаются для установки в общедоступных помещениях и выполняются по типу установочных изделий), быстродействующие постоянного тока и гашения магнитного поля мощных генераторов.

Рисунок – Конструктивная схема автомата

На рисунке дана условная конструктивная схема универсального автомата в упрощенном изображении. Автомат коммутирует электрическую цепь, подсоединяемую к выводам А и Б. В указанном положении автомат отключен и силовая электрическая цепь разомкнута. Чтобы включить автомат, надо вращать вручную по часовой стрелке рукоятку 3. Создается усилие, которое, перемещая рычаги 4 и 5 вправо, будет поворачивать основную несущую деталь 6 автомата вокруг неподвижной оси О по часовой стрелке. Замыкаются и включают цепь тока вначале дугогасительные 8 и 10, а затем главные 7 и 11 контакты автомата. После этого вся система остается в крайнем правом положении, зафиксированном специальной защелкой, и удерживается ею (на рисунке не показана).

Отключающая пружина 2 взводится при включении автомата. При подаче команды на отключение она отключает автомат. Когда по катушке электромагнитного расцепителя 1 протекает ток короткого замыкания, на его якоре создается электромагнитная сила, переводящая рычаги 4 и 5 вверх за мертвую точку, в результате чего автомат пружиной 2 отключается автоматически. При этом контакты размыкаются, и возникающая на них дуга выдувается в дугогасительную камеру 9 и гасится в ней.

Система рычагов 4 и 5 выполняет функции механизма свободного расцепления, который в реальных автоматах имеет более сложное устройство. Механизм свободного расцепления позволяет автомату отключаться в любой момент времени, в том числе и в процессе включения, когда включающая сила воздействует на подвижную систему автомата. Если рычаги 4 и 5 переведены вверх за мертвую точку, то жесткая связь между системами приводной и подвижной нарушается. Мертвая точка соответствует такому положению рычагов, когда прямые линии и , соединяющие оси вращения, совпадают по направлению друг с другом. Автомат немедленно отключается за счет действия возвратной пружины 2, независимо от того, воздействует ли включающая сила на приводную систему автомата или нет.

Механизм свободного расцепления предотвращает возможность следующих друг за другом циклов “отключения-включения” автомата (“прыгание автомата”) при возможном включении его на существующее в цепи короткое замыкание. Представим себе, что при соприкосновении контактов включающегося автомата по цепи пройдет ток короткого замыкания. В этом случае максимальный расцепитель 1 сработает и переведет рычаги механизма свободного расцепления 4 и 5 вверх за мертвую точку. Автомат отключится и больше не включится, так как механическая связь между включающей силой и подвижной системой автомата нарушена. Если бы не было механизма свободного расцепления, то после автоматического отключения автомата последовало бы его немедленное повторное включение под воздействием силы включающего устройства, которая к этому времени могла оказаться неснятой. Произошли бы быстро следующие друг за другом многократные отключения и включения автомата в тяжелом режиме короткого замыкания, что может привести к разрушению автомата.

При отключении автомата первыми размыкаются главные контакты 7 и 11, и весь ток перейдет в параллельную цепь дугогасительных контактов 8 и 10 с накладками из дугостойкого материала. На главных контактах дуга не должна возникать, чтобы эти контакты не обгорали. Дугогасительные контакты размыкаются, когда главные контакты расходятся на значительное расстояние. На них возникает электрическая дуга, которая выдувается вверх и гасится в дугогасительной камере 9.

При включении автомата первыми замыкаются дугогасительные контакты, а затем главные. Возможная из-за вибрации контактов электрическая дуга возникает и гасится лишь на дугогасительных контактах.

Быстродействующие автоматы предназначаются для защиты установок постоянного тока (транспортные, преобразовательные). Их собственное время срабатывания – доли миллисекунды, обычных автоматов – десятые доли секунды.

Быстрое размыкание контактов при возникновении аварийного режима в сети определяет характерную особенность этих автоматов. Сопротивление рано появляющейся на контактах электрической дуги, включенное последовательно в отключаемую цепь, ограничивает ток короткого замыкания, не давая ему, возрасти до установившегося значения. Быстродействие аппарата достигается применением поляризованных электромагнитных устройств в приводе, интенсивных дугогасительных устройств, магнитных систем, в которых изменяющиеся магнитные потоки не сцепляются с замкнутыми обмотками и проходят по шихтованной части магнитопроводов (борьба с замедляющим влиянием вихревых токов) и т.д., а также максимальным упрощением кинематической схемы аппарата и ликвидацией промежуточных звеньев между измерительным органом (расцепителем) и контактами.

РАСЦЕПИТЕЛИ АВТОМАТОВ

Расцепители в автоматах являются измерительными органами. Они контролируют величину соответствующего параметра защищаемой цепи и дают сигнал на отключение автомата, когда он достигает заданного значения, называемого уставкой (ток срабатывания, напряжения срабатывания и т.д.). В расцепителях предусмотрены возможности регулирования уставки в достаточно широких пределах. Это необходимо для осуществления селективной (избирательной) защиты электрической сети, в которую включен автомат.

Селективность защиты достигается прежде всего за счет разного времени срабатывания предыдущей и последующей ступени защиты. Разница во времени срабатывания этих ступеней называется ступенью селективности во времени . Существует также ступень селективности по току.

В разветвленной сети нарастание выдержки времени от одной ступени защиты к другой может привести к недопустимо большой величине этой выдержки на последних ступенях защиты. Длительное протекание большого тока короткого замыкания (10 кА) может привести к недопустимому нагреву проводов в цепи. Поэтому при больших токах целесообразно осуществлять мгновенное отключение автомата (расположенного близко к месту которого замыкания) при помощи расцепителя токовой отсечки.

На величину тока кроме электромагнитного может реагировать тепловой расцепитель, устройство которого аналогично тепловому реле. Этот расцепитель не используется для защиты от токов короткого замыкания, так как он создает при этом недопустимо высокие выдержки времени, однако позволяет получить необходимые в эксплуатацонных условиях большие выдержки времени при токах перегрузки. Тепловым расцепителям свойственны недостатки: их защитные характеристики (зависимость времени срабатывания от тока) нестабильны и меняются с температурой окружающей среды; время возврата расцепителя в исходное положение после срабатывания велико.

В автоматах применяются также расцепители минимального напряжения, подающие команду на отключение автомата при понижении напряжения ниже заданного уровня. Такие расцепители обычно строятся на электромагнитном принципе. При понижении напряжения ниже заданного уровня электромагнитная сила оказывается меньше силы возвратной пружины. Якорь электромагнита отпускается и через промежуточное звено (валик) воздействует на защелку автомата, в результате чего последний отключается.

В отличие от электромагнитного полупроводниковые расцепители, которые широко применяются в последнее время, не имеют такого большого количества подвижных механических элементов. Но главные их преимущества заключаются в улучшении эксплуатационных характеристик: широкие диапазоны регулирования токов и времени срабатывания, что позволяет унифицировать изделия и выпускать меньшую их номенклатуру, более тонкая и точная регулировка времени срабатывания при больших токах короткого замыкания и т.д. В измерительных органах таких расцепителей применяются трансформаторы тока, а одним из основных узлов у них является узел выдержки времени. В их состав входит также выходное реле, передающее сигнал на отключающий электромагнит. Выдержка времени в таких расцепителях осуществляется за счет применения контуров RC в цепях управления транзисторами и применения магнитных накопителей и бесконтактных счетчиков импульсов.

БЕЗДУГОВЫЕ КОНТАКТНЫЕ АППАРАТЫ

Цепь переменного тока можно отключить без образования электрической дуги, если развести контакты с достаточной скоростью непосредственно перед переходом тока через нулевое значение. В это время электромагнитная энергия, запасенная в цепи, приближается к нулю.

Рисунок Полуволна тока

На рисунке изображена полуволна переменного тока. Если точка А соответствует моменту размыкания контактов и образования дуги, то дуга в этом полупериоде будет гореть в течение времени . За это время через неё пройдет количество электричества, определяемой площадью , и выделенная в дуге энергия будет относительно большой. Когда же контакты аппарата разомкнутся непосредственно перед переходом тока через нуль (точка В), в дуге выделится значительно меньшая энергия, так как время её существования и мгновенные значения токов будут значительно меньше. Когда контакты аппарата расходятся перед переходом тока через нуль, количество электричества в стадии газового разряда определится площадью и дуговой столб не успевает накопить в своем объеме значительный запас тепловой энергии. Это тепло быстро рассеивается вблизи перехода тока через нуль, а восстанавливающаяся прочность межконтактного промежутка приобретает высокие значения и быстро нарастает во времени. Создаются условия, при которых дуга гаснет, не успев развиться. Отключение цепи переменного тока становиться практически бездуговым.Отключающие аппараты с фиксированным моментом расхождения контактов непосредственно перед нулевым значением переменного тока принято называть синхронными выключателями .

Основная трудность при создании синхронных выключателей заключается в достижении необходимой точности срабатывания аппарата непосредственно перед нулем тока и в разведении контактов на необходимое изоляционное расстояние за очень малое время, предшествующее переходу тока через нуль. Чтобы преодолеть эти трудности искусственно растягивается пауза тока до одного полупериода ( с при ) с помощью диодов.

КОМАНДОАППАРАТЫ И НЕАВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ

К командоаппаратам относятся путевые и конечные выключатели, кнопки управления, многоцепные аппараты – ключи управления и командоконтроллеры, многочисленные пары контактов которых коммутируются в определенной последовательности при повороте рукоятки из одного положения в другое.

Путевые и конечные выключатели осуществляют коммутацию цепей управления и автоматики на заданном участке пути, проходимом управляемым механизмом. Конечные выключатели устанавливаются, например, в механизмах подъемно-транспортных устройств, в суппортах металлорежущих станков. В первом случае они ограничивают высоту подъема грузов, во втором – ход суппорта, подавая в конце контролируемого хода механизма сигнал на отключение двигателей (а в подъемниках также сигнал на срабатывание тормозного электромагнита).

Командоконтроллер – многопозиционный аппарат, управляющий катушками контакторов, главные контакты которых включены в силовые цепи электрических машин, трансформаторов и резисторов. Контроллер – это также многопозиционный аппарат, предназначенный для управления электрическими машинами и трансформаторами путем коммутации непосредственно силовых цепей обмоток машин, трансформаторов, а также резисторов. С помощью контроллеров (и командоконтроллеров) могут осуществляться пуск, регулирование скорости, реверсирование и остановка двигателей.

Пакетные выключатели – аппараты закрытого типа. Дуга возникает и гасится в ограниченном объеме, в результате давление в этом объеме повышается. С повышением давления сопротивление дуги и напряжение на ней возрастают. Физически это объясняется тем, что с повышением давления уменьшаются расстояния, на которых взаимодействуют элементарные частицы газа. Это приводит, во-первых, к усилению интенсивности теплообмена между частицами газа и улучшению условий теплопередачи от дуги и, во-вторых, к уменьшению длины свободного пробега электронов в газе. При прочих равных условиях это снижает интенсивность процессов ионизации, так как электрон на меньшей длине свободного пробега способен приобрести меньшую энергию, двигаясь в электрическом поле. Это приводит к росту сопротивления и напряжения дуги.

11 ЭЛЕКТРОМЕХАНИЧЕСКИЕ КОММУТАЦИОННЫЕ АППАРАТЫ

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

Контактор – это двухпозиционный аппарат с самовозвратом, предназначенный для частых коммутаций токов, не превышающих токи перегрузки, и приводимый в действие приводом. Этот аппарат имеет два коммутационных положения, соответствующие включенному и отключенному его состояниям. В контакторах наиболее широко применяется электромагнитный привод. Возврат контактора в отключенное состояние (самовозврат) происходит под действием возвратной пружины, массы подвижной системы или при совместном действии этих факторов.

Пускатель – это коммутационный аппарат, предназначенный для пуска, остановки и защиты электродвигателей без выведения и введения в их цепи сопротивлений резисторов. Пускатели осуществляют защиту электродвигателей от токов перегрузки. Распространенным элементом такой защиты является тепловое реле, встраиваемое в пускатель.

Токи перегрузки для контакторов и пускателей не превышают (8-20)-кратных перегрузок по отношению к номинальному току. Для режима пуска двигателей с фазовым ротором и торможения противотоком характерны (2.5-4)-кратные токи перегрузки. Пусковые токи электродвигателей с короткозамкнутым ротором достигают (6-10)-кратных перегрузок по сравнению с номинальным током.

Электромагнитный привод контакторов и пускателей при соответствующем выборе параметров может осуществлять функции защиты электрооборудования от понижения напряжения. Если электромагнитная сила, развиваемая приводом, при снижении напряжения в сети окажется недостаточной для удержания аппарата во включенном состоянии, то он самопроизвольно отключится и осуществит таким образом защиту от понижения напряжения. Как известно, понижение напряжения в питающей сети вызывает протекание токов перегрузки по обмоткам электродвигателей, если механическая нагрузка на них будет оставаться неизменной.

Контакторы предназначены для коммутации силовых цепей электродвигателей и других мощных потребителей. В зависимости от рода коммутируемого тока главной цепи различают контакторы постоянного и переменного тока. Они имеют главные контакты, снабженные системой дугогашения, электромагнитный привод и вспомогательные контакты.Как правило, род тока в цепи управления, которая питает электромагнитный привод, совпадает с родом тока главной цепи. Однако известны случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Рисунок 1 - Конструктивная схема контактора

На рис. 1 изображена конструктивная схема контактора, отключающего цепь двигателя. В этом случае напряжение на катушке 12 отсутствует и его подвижная система под действием возвратной пружины 10, создающей силу F в, придет в нормальное состояние.Возникающая при расхождении главных контактов дуга Д гасится в дугогасительной камере 5.

Быстрое перемещение дуги с контактов в камеру обеспечивается системой магнитного дутья. В цепь главного тока включена последовательная катушка 1, которая размещена на стальном сердечнике 2. Стальные пластины – полюса 3, расположенные по бокам сердечника 2, подводят создаваемое катушкой 1 магнитное поле к зоне горения дуги в камере. Взаимодействие этого поля с током дуги приводит к появлению сил, которые перемещают дугу в камеру.

Контактор включит цепь с током I 0 , если подать напряжение U на катушку 12 приводного электромагнита. Поток Ф, созданный током, протекающим через катушку электромагнита, разовьет тяговую силу и притянет якорь 9 электромагнита к сердечнику, преодолев силы F в противодействия возвратной 10 и F k контактной 8 пружин.

Сердечник электромагнита оканчивается полюсным наконечником 11, поперечное сечение которого больше поперечного сечения самого сердечника. Установкой полюсного наконечника достигается некоторое увеличение силы, создаваемой электромагнитом, а также видоизменение тяговой характеристики электромагнита (зависимости электромагнитной силы от величины воздушного зазора).

Соприкосновение контактов 4 и 6 друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижный контакт 6 будет как бы «проваливаться», упираясь своей верхней частью в неподвижный контакт 4. Он повернется на некоторый угол вокруг точки А и вызовет дополнительное сжатие контактной пружины 8. Появится провал контактов, под которым подразумевается величина смещения подвижного контакта на уровне точки его касания с неподвижным контактом в случае, если неподвижный будет удален.

Провал контактов обеспечивает надежное замыкание цепи, когда толщина контактов уменьшается вследствие выгорания их материала под. действием электрической дуги. Величина провала определяет запас материала контактов на износ в процессе работы контактора.

После соприкосновения, контактов происходит перекатывание подвижного контакта по неподвижному. Контактная пружина создает определенное нажатие в контактах, поэтому при перекатывании происходит разрушение окисных пленок и других химических соединений, которые могут появиться на поверхности контактов. Точки касания контактов при перекатывании переходят на новые места контактной поверхности, не подвергавшиеся воздействию дуги и являющиеся поэтому более «чистыми». Все это уменьшает переходное сопротивление контактов и улучшает условия их работы. В то же время перекатывание повышает механический износ контактов (контакты изнашиваются).

В момент соприкосновения подвижный контакт 6 сразу же оказывает на неподвижный контакт 4 давление, обусловленное предварительным натяжением контактной пружины 8. Вследствие этого переходное сопротивление контактов в момент их касания будет небольшим и контактная площадка не разогреется при включении до значительной температуры. Кроме того, предварительное контактное нажатие, созданное пружиной 8, позволяет снизить вибрацию (отскоки) подвижного контакта при ударе его о неподвижный контакт. Все это предохраняет контакты от приваривания при включении электрической.цепи. На контактах имеются контактные накладки, выполненные из специального материала, например серебра, чтобы улучшить условия длительного прохождения тока через замкнутые контакты во включенном состоянии. Иногда применяются накладки из дугостойкого материала для уменьшения износа контактов под воздействием электрической дуги (металлокерамика «серебро-окись кадмия» и др.). Гибкая связь 7 (для подвода тока к подвижному контакту) изготовляется из медной фольги (ленты) или тонкой проволоки.

Раствором контактов называется расстояние между подвижным и неподвижным контактами в отключенном состоянии контактора. Раствор контактов обычно лежит в пределах от 1 до 20 мм. Чем ниже раствор контактов, тем меньше ход якоря приводного электромагнита. Это приводит к уменьшению в электромагните рабочего воздушного зазора, магнитного сопротивления, намагничивающей силы, мощности катушки электромагнита и его габаритов. Минимальная величина раствора контактов определяется: технологическими и эксплуатационными условиями, возможностью образования металлического мостика между контактами при разрыве цепи тока, условиями устранения возможности смыкания контактов при отскоке подвижной системы от упора при отключении аппарата. Раствор контактов также должен быть достаточным для обеспечения условий надежного гашения дуги при малых токах.

Рисунок 2 - Прямоходовой пускатель

Изображенная на рис. 1 схема контактора поворотного типа довольно типичная. Обычно такие контакторы предназначаются для тяжелого режима работы (большая частота циклов коммутационных операций, индуктивные цепи) при относительно высоких значениях номинального тока (десятки и сотни ампер). Другой распространенный тип контакторов и пускателей - прямоходовой; он рассчитывается преимущественно на меньшие номинальные токи (десятки ампер) и более легкие условия работы. Прямоходовой пускатель (рис. 2) имеет мостиковые контакты 2 и 3, с которых дуга выдувается в дугогасительные камеры 1. Сила F k контактной пружины создает нажатие в замкнутых контактах, возвратная пружина F п возвращает подвижную систему аппарата в отключенное состояние, когда будет снято напряжение с катушки. Аппарат включается электромагнитом при подаче напряжения на его катушку 5. На полюсах электромагнита переменного тока устанавливаются короткозамкнутые витки 4, устраняющие вибрацию якоря во включенном положении аппарата.

В отличие от контактора постоянного тока в контакторе переменного тока для уменьшения потерь на вихревые токи применяют шихтованные магнитопроводы и короткозамкнутые витки на полюсах для устранения вибрации якоря. Контакторы переменного тока чаще изготовляют трехполюсными, постоянного тока - однополюсными и двухполюсными. В качестве дугогасительного устройства в контакторах на постоянном токе чаще применяются щелевые камеры, на переменном - чаще дугогасительная решетка.

Для гашения дуги применяют также камеры с дугогасительной решеткой. Дугогасительная решетка представляет собой пакет тонких металлических пластин 5 (рис. 1). Под действием электродинамических сил, создаваемых системой магнитного дутья, электрическая дуга попадает на решетку и рвется на ряд коротких дуг. Пластины интенсивно отводят тепло от дуги и гасят ее, но пластины дугогасительной решетки обладают значительной термической инерционностью - при большой частоте включений они перегреваются и эффективность дугогашения падает.

Мощные контакторы переменного тока имеют главные контакты, снабженные системой дугогашения - магнитным дутьем и дугогасительной камерой с узкой щелью или дугогасительной решеткой, как и контакторы постоянного тока. Конструктивное отличие заключается в том, что контакторы переменного тока выполняют многополюсными; обычно они имеют три главных замыкающих контакта. Все три контактных узла работают от общего электромагнитного привода клапанного типа, который поворачивает вал контактора с установленными на нем подвижными контактами. На том же валу устанавливают вспомогательные контакты мостикового типа. Контакторы имеют достаточно большие габаритные размеры. Их применяют для управления электродвигателями значительной мощности.

Для увеличения срока службы конструкция контакторов допускает смену контактов.

Существуют комбинированные контакторы переменного тока, в которых параллельно главным замыкающим контактам включают два тиристора. Во включенном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления открывает тиристоры, которые шунтируют цепь главных контактов и разгружают их от тока отключения, препятствуя возникновению электрической дуги. Поскольку тиристоры работают в кратковременном режиме, их номинальная мощность невелика и они не нуждаются в радиаторах охлаждения.

Наша промышленность выпускает комбинированные контакторы типа КТ64 и КТ65 на номинальные токи, превышающие 100 А, выполненные на базе широко распространенных контакторов КТ6000 и снабженные дополнительным полупроводниковым блоком.

Коммутационная износостойкость комбинированных контакторов в режиме нормальных коммутаций составляет не менее 5 млн. циклов, а коммутационная износостойкость полупроводниковых блоков примерно в 6 раз выше. Это позволяет многократно использовать их в системах управления.

Для управления электродвигателями переменного тока небольшой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Двукратный разрыв цепи и облегченные условия гашения дуги переменного тока позволяют обойтись без специальных дугогасительных камер, что существенно уменьшает габаритные размеры контакторов.

Прямоходовые контакторы обычно выпускаются промышленностью в трехполюсном исполнении. При этом главные замыкающие контакты разделяются пластмассовыми перемычками 1.

Наряду со слаботочными герконами, созданы герметичные силовые магнитоуправляемые контакты (герсиконы), способные коммутировать токи в несколько десятков ампер. На этой основе были разработаны контакторы для управления асинхронными электродвигателями мощностью до 1.1 кВт. Герсиконы отличаются увеличенным раствором контактов (до 1.5 мм) и повышенным контактным нажатием. Для создания значительной силы электромагнитного притяжения используют специальный магнитопровод.

Область применения электромагнитных контакторов достаточно широка. В машиностроении контакторы переменного тока применяют чаще всего для управления асинхронными электродвигателями. В этом случае их называют магнитными пускателями. Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

На рисунке 1 (а, б) показаны соответственно монтажная и принципиальная схемы соединений нереверсивного магнитного пускателя. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рисунок 1 - Схемы нереверсивного пускателя

На принципиальной схеме все элементы одного аппарата имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор KM с тремя главными замыкающими контактами (Л1-С1, Л2-С2, Л3-С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки контактора (или цепи управления) с наибольшим током – тонкими линиями.

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки контактора потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 – 5,

что создаст параллельную цепь питания катушки контактора. Если теперь кнопку «Пуск» отпустить, то катушка контактора будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то контактор отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита превращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют контакторное управление.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки контактора.

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рисунке 2, а. Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки. В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой. Если после нажатия кнопки SВ3 «Вперед» и включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Рисунок 2 - Схемы реверсивного пускателя

Аналогичная схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рисунке 2, б. В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Магнитные пускатели открытого исполнения монтируют в шкафах электрооборудования. Пускатели пылезащищенного и пылебрызгонепроницаемого исполнения снабжают кожухом и монтируют на стене или стойке в виде отдельного аппарата.

Электромагнитные контакторы выбирают по номинальному току электродвигателя с учетом условий эксплуатации. ГОСТ 11206-77 устанавливает несколько категорий контакторов переменного и постоянного тока. Контакторы переменного тока категории АС-2, АС-3 и АС-4 предназначены для коммутации цепей питания асинхронных электродвигателей. Контакторы категории АС-2 используют для пуска и отключения электродвигателей с фазным ротором. Они работают в наиболее легком режиме, поскольку эти двигатели обычно пускаются при помощи роторного реостата. Категории АС-3 и АС-4 обеспечивают прямой пуск электродвигателей с короткозамкнутым ротором и должны быть рассчитаны на шестикратный толчок пускового тока. Категория АС-3 предусматривает отключение вращающего асинхронного электродвигателя. Контакторы категории АС-4 предназначены для торможения противотоком электродвигателей с короткозамкнутым ротором или отключения неподвижных электродвигателей и работают в наиболее тяжелом режиме.

Контакторы, предназначенные для работы в режиме АС-3, могут быть использованы в условиях, соответствующих категории АС-4, но номинальный ток контактора при этом снижается в 1.5-3 раза. Аналогичные категории применения предусмотрены для контакторов постоянного тока.

Контакторы категории ДС-1 применяют для коммутации малоиндуктивной нагрузки. Категории ДС-2 и ДС-3 предназначены для управления электродвигателями постоянного тока с параллельным возбуждением и позволяют коммутировать ток, равный . Категории ДС-4 и ДС-5 применяют для управления электродвигателями постоянного тока с последовательным возбуждением.

Указанные категории определяют режим нормальных коммутаций, в котором контактор может непрерывно работать длительное время. Кроме того, различают режим редких (случайных) коммутаций, когда коммутационная способность контактора может быть увеличена примерно в 1.5 раза.

Если асинхронный электродвигатель работает в повторно-кратковременном режиме, то выбор контактора осуществляется по величине среднеквадратичного тока. На выбор контактора влияет степень защиты контактора. Контакторы защищенного исполненияимеют худшие условия охлаждения, и их номинальный ток снижается примерно на 10% по сравнению с контакторами открытого исполнения.

КОНТАКТНО – ДУГОГАСИТЕЛЬНЫЕ СИСТЕМЫ КОНТАКТОРОВ

В контакторах обычно используются рычажные (рис. 1, а) и мостиковые (рис. 1, б) контакты. В рычажных контактах образуется при отключении один разрыв (одна дуга), в мостиковых – два (две дуги). Поэтому при прочих равных условиях возможности для отключения электрических цепей у аппаратов с мостиковыми контактами выше, чем у аппаратов с рычажными (пальцевыми) контактами.

Рисунок 1 – Рычажные и мостиковые контакты

Мостиковые контакты по сравнению с рычажными имеют тот недостаток, что в замкнутом состоянии в них создается два контактных перехода тока, в каждом из которых должно быть создано надежное касание. Поэтому сила контактной пружины должна быть удвоенной (по сравнению с рычажными контактами), что в конечном итоге увеличивает мощность электромагнитного привода контактора.

В контакторах переменного тока на отключаемые токи до 100 А при напряжении сети до 100-200 В можно не применять дугогасительные камеры, так как дуга гасится за счет растяжения ее в атмосферном воздухе (открытый разрыв). Для предотвращения перекрытия электрических дуг на соседних полюсах применяются изоляционные перегородки. Контакторы с открытым разрывом дуги существуют также и на постоянном токе, но отключаемые токи для них существенно меньше.

При высоких значениях отключаемых токов и напряжений аппараты снабжаются дугогасительными камерами, из которых наиболее распространены щелевые камеры и дугогасительные решетки . Щелевая камера (рис. 2, а) образует внутри узкий просвет (щель) между стенками из дугостойкого изоляционного материала (асбестоцемент и др.). В него загоняется электрическая дуга 1 и там она гасится за счет усиленного отвода тепла при тесном соприкосновении со стенками.

Дугогасительная решетка (рис. 2, б) представляетсобой пакет из тонких ( мм) металлических пластин 2, на которые выдувается дуга. Пластины выполняют роль радиаторов, интенсивно отводящих тепло от столба дуги и способствующих ее гашению.

Наиболее важной характеристикой дугогасительной камеры является вольт – амперная характеристика. Используя ее, можно рассчитать процессы гашения дуги при отключении цепи.

Рисунок 2 – Дугогасительные камеры

Как показал опыт эксплуатации, дугогасительная решетка непригодна для частых отключений цепи при сравнительно больших токах. При большой частоте отключений ее пластины разогреваются до высоких температур и не успевают остыть. Они оказываются неспособными охлаждать столб дуги, и решетка отказывает в работе. Для режима частых отключений цепи более пригодны щелевые дугогасительные камеры. , м, между пластинами 3 на рис. 3, а) в соответствии с законом полного тока для однородного поля (HL=Iw) напряженность поля (А/м)

.

Подставив это значение в (*), получим:

,

где – число витков катушки.

Так как в системе с катушкой последовательного магнитного дутья сила пропорциональна квадрату тока, то целесообразно использовать этот вид дутья в контакторах, рассчитанных на сравнительно большие номинальные токи. Для сокращения расхода меди на изготовление катушки, сечение которой должно выбираться по номинальному току контактора, желательно иметь возможно меньшее число витков катушки. Однако это число витков должно обеспечивать такую напряженность магнитного поля в зоне его взаимодействия с током дуги, которая создаст условия для надежного гашения дуги в заданном диапазоне отключаемых токов. Обычно оноизмеряется единицами при номинальных токах в сотни ампер, а при токах в десятки ампер достигает десяти и выше.

Преимущество систем с катушкой последовательного магнитного дутья заключается в том, что направление силы не зависит от направления тока . Это позволяет применять указанную систему не только на постоянном, но и на переменном токе. Однако на переменном токе вследствие появления вихревых токов в магнитопроводе может возникнуть сдвиг по фазе между током дуги и результирующей напряженностью магнитного поля в зоне горения дуги, что может вызвать обратное «забрасывание» дуги в камеру.

Недостаток системы с катушкой последовательного магнитного дутья – малая напряженность магнитного поля, создаваемая ею при небольших отключаемых токах. Поэтому параметры этой системы надо выбирать так, чтобы в области этих токов обеспечить максимально возможную напряженность магнитного поля в зоне горения дуги, не прибегая к значительному увеличению числа витков катушки магнитного дутья, чтобы не вызывать излишнего расхода меди на её изготовление. При небольших токах магнитопровод этой системы не должен насыщаться. Тогда почти вся намагничивающая сила катушки компенсируется падением магнитного потенциала в воздушном зазоре и напряженность магнитного поля в нем окажется максимально возможной. При больших токах магнитопровод, наоборот, целесообразно вводить в насыщение, когда его магнитное сопротивление становится большим. Это снизит напряженность магнитного поля в зоне расположения дуги, уменьшит силу и интенсивность гашения дуги, снизит перенапряжения при её гашении.

Существует система с катушкой параллельного магнитного дутья, когда катушка 1 (см. рис. 3), содержащая сотни витков из тонкого провода и рассчитываемая на полное напряжение источника питания, создает в зоне горения дуги напряженность магнитного поля (А/м)

.

Действующая на дугу электродинамическая сила (Н) (см. рис. 3, б)

,

где

В этой системе сила, действующая на дугу, пропорциональна току в первой степени. Поэтому она оказывается более целесообразной для контакторов на небольшие токи (примерно до 50 А).

Контактор с параллельной катушкой магнитного дутья реагирует на направление тока. Если направление магнитного поля сохраняется неизменным, а ток изменит свое направление, то сила будет направлена в противоположную сторону. Дуга будет перемещаться не в дугогасительную камеру, а в противоположную сторону – на катушку магнитного дутья, что может привести к аварии в контакторе. Это – недостаток рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.

В системе магнитного дутья вместо катушки напряжения можно применять постоянный магнит. По свойствам такая система аналогична системе с параллельной катушкой магнитного дутья. Замена катушки напряжения постоянным магнитом исключит расход меди и изоляционных материалов, которые потребовались бы на создание катушки. При этом в системе не должны нарушаться свойства постоянного магнита в процессе эксплуатации.

Системы с катушкой параллельного магнитного дутья и постоянными магнитами на переменном токе не применяются, так как практически невозможно согласовать направление магнитного потока с направлением тока дуги, чтобы получить одно и то же направление силы в любой момент времени.

С увеличением напряженности поля магнитного дутья улучшаются условия схода дуги с контактов на дугогасительные рога и облегчается её вхождение в камеру. Поэтому с ростом уменьшается также износ контактов от термического воздействия дуги, но до определенного предела.

Большие напряженности поля создают значительные силы, воздействующие на дугу и выбрасывающие расплавленные металлические мостики из межконтактного промежутка в атмосферу. Это повышает износ контактов . При оптимальной напряженности поля износ контактов минимален.

Износ контактов – важный технический фактор. Поэтому принимаются серьезные меры, например уменьшение вибрации контактов при включении аппарата, чтобы уменьшить износ и увеличить срок службы контактов.

Важной характеристикой дугогасительного устройства переменного тока является закономерность роста восстанавливающейся прочности межконтактного промежутка за переходом тока через нуль.

12 РЕЛЕ. ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ – ТЕХНИЧЕСКАЯ ОСНОВА ДЛЯ СОЗДАНИЯ АППАРАТУРЫ РЕЛЕЙНОЙ ЗАЩИТЫ

Релейная защита любой электроустановки содержит три основные части: измерительную, логическую и выходную. В измерительную часть входят измерительные и пусковые органы защиты, которые воздействуют на логическую часть при отклонении электрических параметров (тока, напряжения, мощности, сопротивления) от значений, предварительно заданных для защищаемого объекта.

Логическая часть состоит из отдельных переключающих элементов и органов выдержки времени, которые при определенном действии (срабатывании) измерительных и пусковых органов в соответствии с заложенной в логическую часть программой запус

Одним из важных компонентов токопроводящей системы, выполняющий защитную функцию является предохранитель. Данные устройства выполняются в различных конфигурациях и имеют множество моделей. Данная статья расскажет о плавком предохранителе. Каждый блок имеет свои токоведущие элементы, поэтому токопроводящий элемент принимает важное участие в стабильной работе электрических цепей. Необходимо отметить, что понятия плавкий предохранитель и плавкая вставка имеют несколько различные определения. Данная статья поможет понять это отличие.

Принцип действия

Базовая особенность предохранителя состоит в том, что его сгорание в электрической цепи происходит гораздо раньше, нежели других элементов. В случае скачка тока электрической цепи, предохранитель гораздо легче и быстрее заменить, нежели менять токоведущие провода, микросхемы и т.п.

Название плавкий данный элемент получил, поскольку основным элементом его конструкции является плавкая вставка. Этот компонент имеет низкую величину температуры плавления, по закону Джоуля-Ленца при прохождении тока через проводник в нем выделяется тепловая энергия, и предохранитель при высокой величине тока, являющейся опасной для остальных компонентов, сгорает. Это приводит к размыканию электрической цепи. Таким образом, предохранитель защищает от повреждения остальные элементы электрической схемы.

Режимы работы плавкого предохранителя:

  • Короткое замыкание:
    • Сгорание плавкой вставки предохранителя происходит за максимально короткое время;
  • Перегрузки:
    • Сгорание плавкой вставки происходит за определенное время, которое зависит от величины тока в этом режиме. Чем больше ток перегрузки, тем быстрее сгорает предохранитель.
  • Нормальны режим. Нагревание устройства, является установившимся процессом, в котором:
    • Происходит полный нагрев до конкретной температуры и отдача количества выделенной теплоты;
    • Каждый предохранитель имеет обозначение с номинальным значением тока;
    • Необходим выбор плавящегося элемента с определенным током номинального режима.

При выборе необходимого предохранителя, нужно руководствоваться не только показанием величины тока, указанной на корпусе. Но также допустимое рабочее напряжение и времятоковую характеристику.

Времятоковая характеристика необходима для показания величины изменения времени полного разрыва цепи при подаче тока определенного значения.

Конструкция

Основным элементом, входящим в состав предохранителя является – плавкая вставка. Данные вставки имеют множество конфигураций, но тем не менее имеют два базовых элемента:

  • Плавкий элемент – выполнен из сплава различных металлов либо выполняется со специально подобранными сплавами металла.

Плавкие вставки выполняются из различных материалов:

  1. цинк;
  2. свинец;
  3. медь;
  4. олово;
  5. серебро.
  • Корпус – блок, содержащий комплекс крепежных элементов, позволяющих подключение коммутационного элемента к электрической цепи.

Корпуса выполняются из разновидностей прочной керамики такие как:

  1. фарфор;
  2. корундо-муллитовая керамика;
  3. стеатит.

При использовании электропредохранителей с малым током номинального режима корпус выполняется из специальных стекол.

К основным параметрам, характеризующие плавкие предохранители относятся:

  1. номинальное напряжение;
  2. номинальный ток;
  3. максимальная мощность;
  4. скорость срабатывания.

Все эти факторы необходимо учитывать при расчете плавкой вставки.

Расчет плавких значений номинального тока производится согласно формулы 1:

Из формулы, для расчета, необходимо знать U – напряжение, Pmax – максимальная нагрузочная мощность.

Виды предохранителей

Основным и наиболее важным этапом является выбор плавких вставок предохранителей. Это необходимо, учитывая различные условия в которых применяются следующие разновидности электропредохранителей:

  • Электропредохранители вилочные. Данный тип токопроводящих устройств зачастую работает в цепи постоянного тока. Конструкция выполнена в виде расположения электроконтактов с одной стороны, а плавкой части с обратной.

Вилочные предохранительные элементы подразделяются на:

  1. вилочные обычные;
  2. вилочные миниатюрных размеров.
  • Электропредохранители пробковые. Один из самых часто встречающихся видов. В основе конструкции лежит корпус, изготовленный из фарфора. Во внутренней части корпуса располагается тонкая проволока, которая сгорает в случае аварийного режима. В блок корпуса входит грузик, определяющий состояние предохранительного компонента. Каждый грузик имеет определённый цвет, соответствующий необходимой силе тока. В случае его свисания на участке проволоки, требуется его замена.

Разновидности конфигураций и назначение:

  1. DIAZED – применим в системе, элементы которой выполнены для самых различных требований методов установки.
  2. NEOZED – такой тип позволяет безопасно произвести замену плавких элементов при обесточенном состоянии.

Номинальный ток плавкой вставки выбирается исходя из максимальной мощности сети.

Величины токов согласно цвета чеки

  • Электропредохранители ножевые. Данная разновидность применяется на линиях электроустановок, с рабочей величиной тока порядка 1200 – 1300 А. В свою очередь являются очень опасными для здоровья человека. Использование таких разновидностей компонента токопроводящей системе ведет к очень жесткому выполнению всех требований техники безопасности. На таких объектах работают только персонал, имеющий соответствующую квалификацию.

Ножевой электрический предохранитель по значению тока делится:

  1. 000 (˂ 100 А);
  2. 00 (˂ 160 А);
  3. 0 (˂ 250 А);
  4. 1 (˂ 355 А);
  5. 2 (˂ 500 А);
  6. 3 (˂ 800 А);
  7. 4а (˂ 1250 А).
  • Вставки слаботочные. Основное их назначение это - защита маломощных электрических цепей. Конструкция имеет стеклянный корпус, выполненный в виде цилиндра с металлическими элементами, соединенными токопроводящей проволокой. При коротком замыкании происходит сгорание проволоки, которая в свою очередь размыкает цепь и сохраняет неповрежденными остальные элементы схемы.

Такие корпуса выполняются с различными габаритными размерами (в мм):

  1. 3 х 15;
  2. 5 х 20;
  3. 7 х 15;
  4. 10 х 38.

Подведя итог рассмотрения плавких предохранителей, стоит отметить что предохранители должны применяться во многих электрических устройствах во избежание повреждения их элементов. Кроме вышесказанного имеет смысл обратить внимание на их достоинства и недостатки.

Достоинства:

  1. невысокая стоимость;
  2. в случае высокого скачка тока, электропредохранитель полностью размыкает электрическую цепь.
  3. в случае выхода из строя предохранителя, имеется возможность простой замены токопроводящего элемента.

Недостатки:

  1. использование предохранителя лишь один раз, потом выполняется его замена;
  2. замена токопроводящего элемента на электропредохранитель большего номинала;
  3. при использовании трехфазных электродвигателей, рекомендуется использовать реле фаз, во избежание сгорания одного из предохранителей.

В последнее время многие производители применяют для разработки современные стандарты качества, для того чтобы блок каждого токопроводящего элемента мог достойно конкурировать с европейскими и мировыми аналогами.

Таким образом, защита электрических цепей с помощью различных предохранителей является одним из самых простых, надежных и дешевых способов.

Видео о плавких предохранителях