Строительный портал - NativeStudio

Геометрия токарного резца. Основные углы токарного резца

Токарный резец выбран в качестве представителя режущих инструментов, как наиболее простой.

Определения геометрических параметров токарного резца остаются справедливыми и для других типов режущих инструментов с учетом особенности их кинематических схем резца.

Токарный проходной резец состоит из рабочей части и державки (рис. 1.2).

Рабочая часть содержит режущие лезвия и образуется в процессе заточки (переточки) резца.

Державка служит для закрепления резца в резцедержателе станка.

Передняя поверхность - поверхность, по которой сходит стружка.

Главная задняя поверхность обращена к обрабатываемой поверхности заготовки.

Вспомогательная задняя поверхность обращена к обработанной поверхности заготовки.

Главная режущая кромка образуется пересечением передней и главной задней поверхности.

Вспомогательная режущая кромка образуется пересечением передней и вспомогательной задней поверхности.

Рис. 1.2. Токарный проходной резец:

1 - передняя поверхность; 2 - главная задняя поверхность; 3 - вспомогательная задняя поверхность; 4 - главная режущая кромка; 5 - вспомогательная режущая кромка; 6 - вершина резца

Вершина резца является сопряжением главной и вспомогательной кромки по радиусу или фаске.

По ГОСТ 25762-83 различают статические и кинематические углы токарного резца.

Статические углы используются при разработке чертежа инструмента, при его заточке и контроле.

Кинематические углы резца образуются в процессе резания и зависят от параметров режима резания (главным образом - от величины подачи).

Статические углы токарного резца измеряются в статической системе координат, а кинематические - в кинематической системе координат. И статическая, и кинематическая системы координат связаны с кинематикой резца.

Статическая система координат - это прямоугольная система координат с началом в рассматриваемой точке режущей кромки, ориентированная относительно направления скорости V главного движения (рис. 1.3а). Для резца, установленного по оси центров, ось z направлена вертикально вверх, оси x и y расположены в горизонтальной плоскости (рис. 1.3а); ось y направлена вдоль оси державки резца, ось x - вдоль направления подачи резца.

Для отсчета статических углов токарного резца (углов заточки) используют следующие статические координатные плоскости: основную плоскость, плоскость резания и рабочую плоскость (рис. 1.3а).

Основная плоскость - плоскость, проведенная через рассматриваемую точку режущей кромки перпендикулярно вектору V скорости главного движения (плоскость OXY ).


Плоскость резания - плоскость, касательная к режущей кромке в рассматриваемой точке и перпендикулярная основной плоскости.

Рабочая плоскость - плоскость, проходящая через векторы V скорости главного движения и V s скорости движения подачи (плоскости OXZ ).

Рис. 1.3. Статическая (а) и кинематическая (б) системы координат (η - угол скорости резания)

На рисунке 1.4 показаны статические углы токарного резца.

Главная секущая плоскость - плоскость, перпендикулярная проекции главной режущей кромки на основную плоскость.

Вспомогательная секущая плоскость - плоскость, перпендикулярная проекции вспомогательной режущей кромки на основную плоскость.

В главной секущей плоскости расположены:

· главный передний угол γ - угол между передней поверхностью и основной плоскостью. В зависимости от положения передней поверхности относительно основной плоскости различают положительный или отрицательный передний угол (рис. 1.4). Если же передняя поверхность совпадает с основной плоскостью, то передний угол равен нулю. На рисунке 1.4 показан положительный передний угол;

· главный задний угол α - угол между главной задней поверхностью и плоскостью резания;

· угол заострения β - угол между главной задней и передней поверхностью резца.

Из рисунка 1.4 следует:

γ + β + α = 90 0 (1.1)

Обычно задают углы γ и α , а угол β рассчитывают по формуле (1.1).

Во вспомогательной секущей плоскости измеряют вспомогательный задний угол α 1 - это угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости.

В основной плоскости измеряются углы в плане:

· главный угол в плане φ - угол между проекцией главной режущей кромки на основную плоскость и рабочей плоскостью;

· вспомогательный угол в плане φ 1 - угол между проекцией вспомогательной режущей кромки на основную плоскость и рабочей плоскостью;

· угол при вершине в плане ε - уг ол между проекциями главной и вспомогательной режущими кромками на основную плоскость.

Рис. 1.4. Статические углы токарного резца:

N-N - главная секущая плоскость; N 1 -N 1 - вспомогательная секущая плоскость

Из рисунка 1.4 следует:

φ + φ 1 + ε = 180º. (1.2)

Обычно назначают углы φ и φ 1 , а угол ε определяют по формуле (1.2).

Угол наклона главной режущей кромки λ - угол, расположенный в плоскости резания между главной режущей кромкой и основной плоскостью. Угол λ может быть положительным, равным нулю и отрицательным. Угол λ равен нулю, если главная режущая кромка находится в основной плоскости. На рисунке 1.5б показан отрицательный угол наклона главной режущей кромки.

Рис. 1.5. Угол наклона главной режущей кромки λ токарного проходного резца [ 3]: a)λ>0, б)λ<0, в)λ = 0

Кинематические углы токарного резца образуются в процессе резания и зависят от параметров режима резания (главным образом - от величины по-дачи).

Кинематическая система координат - это прямоугольная система координат с началом в рассматриваемой точке режущей кромки, ориентированная относительно скорости V e результирующего движения резания (рис. 1.3б).

Из рисунка 1.3б следует, что кинематическая система координат повернута относительно статической на угол η (угол скорости резания). Причем вращение осуществляется относительно оси y (на плоскости OXZ ).

Таким образом, кинематические и статические углы токарного резца различаются только положением координатных плоскостей их отсчета. Определения же углов являются одинаковыми; только вместо слова «статический» употребляется слово «кинематический».

Ниже приведены некоторые наиболее важные определения .

Кинематическая основная плоскость - плоскость, перпендикулярная вектору скорости V e результирующего движения резания.

Кинематическая плоскость резания - плоскость, касательная к главной режущей кромке и перпендикулярная кинематической основной плоскости.

Кинематический перпендикулярный угол γ к - угол в кинематической главной секущей плоскости между передней поверхностью и кинематической основной плоскостью.

Кинематический задний передний угол α к - угол в кинематической главной секущей плоскости между главной задней поверхностью и кинематической плоскостью резания.

В процессе резания кинематический передний угол увеличивается, а кинематический задний угол уменьшается по сравнению со статическими углами (γ к < γ; α k < α ). Другие кинематические углы (углы, в плане, угол наклона главной режущей кромки) поменяются незначительно. Эти изменения углов при резании обычно не учитываются. Наибольшее изменение кинематических углов имеет место для упорного проходного резца. Так, при Y = 90º, λ =

γ к = γ + η 1 , α к = α - η 1 (1.3)

где η - кинематическая составляющая, равная углу скорости резания:

η = arctg = arctg , (1.4)

где Vs - скорость подачи, S o - подача на оборот, D - диаметр рассматриваемой точки режущей кромки. При V ? V s кинематическую составляющую можно полагать равной нулю. В этом случае

γ к γ , α к α. (1.5)

Изменения кинематических углов по сравнению со статическими нужно учитывать, если скорость подачи V s сравнима со скоростью главного движения V . Особенно опасно изменение кинематического заднего угла, т.к. он может стать равным нулю и даже отрицательным, что недопустимо. Так, например, при нарезании резьбы с крупным шагом или при сверлении отверстий малого диаметра заточку заднего угла необходимо производить с учетом кинематической составляющей.

Углы заточки проходных резцов статические углы резцов называют также углами заточки, т.к. все углы могут быть установлены на лимбах трех поворотных тисков заточного станка. Значения углов заточки резцов зависят от свойств технологической системы, главным образом - от жесткости и виброустойчивости. Так, среднее значение переднего угла γ равно 10º. Однако, если не происходит выкраивание режущей кромки, этот угол можно увеличить до 15-20º. Для упрочнения режущей кромки затачивают упрочняющую фаску f , шириной примерно равной толщине срезаемого слоя а , под углом γ f = 0 - -5º. На передней поверхности часто затачивают лунку для обеспечения завивания стружки. Задний угол α лежит в пределах 8-12º.

Меньшие значения применяют для черновой обработки, большие - для чистовой. Главный угол в плане φ изменяется в пределах 30-90º. Меньшие значения используют в условиях повышенной жесткости технологической системы. Угол φ = 90º рекомендуется для обработки нежестких заготовок. Это ведет к уменьшению радиальной силы резания P y и к увеличению точности обработки. Вспомогательный угол в плане φ 1 влияет на качество обработанной поверхности.

При высоких требованиях к качеству поверхности этот угол уменьшают до 5-10º, а иногда делают нулевым (для резцов с зачищающими режущими кромками). Угол наклона режущей кромки λ влияет на направление схода стружки и на прочность режущего клина. Угол λ изменяется в пределах ±5º. При положительных углах λ стружка сходит в направлении к обработанной поверхности. При отрицательных λ - в направлении к обрабатываемой поверхности.

Углы резца относятся к основным геометрическим параметрам его режущей части. Определение, положение и величина их меняется в зависимости от того, рассматриваются ли они в процессе резания, или же вне связи с обрабатываемой заготовкой, т. е. как у геометрического тела.

Рассмотрим углы резца, как углы геометрического тела (Рис. 1). Для удобства понимания необходимо дать определения углов резца.

Главные и вспомомгательные углы резца

Под основной плоскостью понимается плоскость, параллельная к направлениям продольной и поперечной подач.

Рисунок - Главный и вспомогательные углы в плане

φ заключается между проекцией главной режущей кромки на основную плоскость и направлением продольной подачи.

Вспомогательный угол в плане φ1 заключается между проекцией вспомогательной режущей кромки на основную плоскость и направлением продольной подачи.

Угол при вершине (в плане) е заключается между проекциями главной и вспомогательной кромок на основную плоскость.

Угол наклона главной режущей кромки λ , заключается между главной режущей кромкой и линией, проведенной через вершину резца параллельно основной плоскости. Он измеряется и плоскости, проходящей через главную режущую кромку перпендикулярно к основной плоскости. Угол к принимается положительным, если вершина резца является наинизшей точкой главной режущей кромки, и отрицательным, если вершина резца является наивысшей точкой главной режущей кромки, и ранен пулю, если главная режущая кромка расположена параллельно основной плоскости.

Углы φ и φ1 и ε измеряются и основной плоскости.

Передний и задний углы

Для определения переднего и заднего углов резца необходимо ввести понятия о главпой секущей плоскости, в которой подлежат измерению
эти углы. В качестве ее целесообразно принять плоскость NN, перпендикулярную к основной плоскости и к проекции, главной режущей кромки на эту плоскость.

Такая секущая плоскость мало отклоняется от плоскости, в которой происходит процесс отделения стружки при резании, и, кроме того, она упрощает измерение углов резца.

Главный задний угол α заключается между плоскостью, касательной к задней поверхности, и плоскостью, проходящей через главную режущую кромку перпендикулярно основной плоскости.

Главный передний угол γ заключается между плоскостью, касательной к передней поверхности, и плоскостью, проходящей через главную режущую кромку параллельно основной плоскости.

Следует еще различать вспомогательный задиий угол α 1 , измеряемый в секущей плоскости, перпендикулярной к основной плоскости и к проекции вспомогательной режущей кромки на эту плоскость. Он заключается между плоскостью, касательной к задней поверхности, и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости.
Главные углы резца, передний и задний, обычно задаются в главной секущей плоскости NN. Однако при изготовлении приходится еще оперировать этими углами, расположенными в других секущих плоскостях. Например, в продольной плоскости /-/ (апр, упр), расположенной параллельно оси резца и перпендикулярно основной плоскости, и в поперечной плоскости //-// (апоп, упоп )расположенной перпендикулярно оси резца и основной плоскости.

Зависимость между углами

Определим зависимости между этими углами.

Рис. 1 Определение углов резца в различных плоскостях

На Рис. 1 представлены следующие плоскости:

FG - основная плоскость, параллельная направлениям продольной и поперечной подачам (в данном случае совпадающая с опорной плоскостью резца и плоскостью чертежа);
АВ GF - плоскость, проходящая через режущую кромку АВ перпендикулярно к основной плоскости;
АВ GF - плоскость, представляющая заднюю плоскость при рассмотрении задних углов и переднюю плоскость при рассмотрении передних углов;
М NF - плоскость, параллельная плоскости АВ и заключающая в ней угол λ;
В DG и А EF - ограничивающие тело резца плоскости, перпендикулярные к основной плоскости и к проекции режущей кромки на эту плоскость.

Проведем через любую точку R режущей кромки три искомых плоскости:

ROК , в которой находятся углы а и у;
ROG, в которой находятся углы а пр и у пр;
ROF, и которой находятся углы а поп и у поп;

Линия GF пересечения плоскости АВ GF с основной плоскостью составляет угол ω с проекцией режущей кромки.

У резца различают главные углы, вспомогательные углы и углы в плане.

Главные углы измеряются в сечении главной секущей плоскости А-А (рис. 13), которая перпендикулярна к проекции главной режущей кромке на основную плоскость.

g - главный передний угол – угол между передней поверхностью и плоскостью, перпендикулярной к плоскости резания.

Рисунок 7 – Элементы резца Рисунок 8 – Поверхности и плоскости

при токарной обработке

Рисунок 9 – Углы токарного резца

С увеличением угла g инструмент легче врезается в материал, снижается сила резания и расход мощности, повышается качество обрабатываемой поверхности. С другой стороны чрезмерное увеличение угла g снижает прочность главной режущей кромки и увеличивает ее износ. Величина g обычно составляет 0 - 15 о, а при обработке твердых материалов и ударных нагрузках передний угол может быть отрицательным и достигать – 10 о.

a  – главный задний угол – угол между главной задней поверхностью и плоскостью резания. Угол a предназначен для уменьшения трения между главной задней поверхностью и поверхностью резания, что снижает износ инструмента. Чрезмерное увеличение угла приводит к снижению прочности режущего лезвия. Обычно он составляет 6 – 12 о.

b угол заострения (угол клина), находится между передней и главной задней поверхностью резца (a +b +g = 90 о).

d - угол резания , находится между передней поверхностью и плоскостью резания (d = a + b ).

Вспомогательные углы определяются в сечении вспомогательной секущей плоскостью Б-Б, которая проходит перпендикулярно к проекции вспомогательной режущей кромки на основную плоскость.

a 1 - вспомогательный задний угол , который находится между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости. Угол уменьшает трение между вспомогательной задней поверхностью резца и обработанной поверхностью заготовки. Он составляет обычно 3 – 5°.

К вспомогательным углам относят обычно угол наклона главной режущей кромки l , который определяется между главным режущим лезвием и плоскостью, проходящей через вершину резца параллельно основной плоскости (рис. 14). Угол определяет направление схода стружки и колеблется от + 5 о до - 5 о. Если l = 0, стружка сходит по оси резца, если l < 0 – стружка сходит в направлении подачи, при l > 0 стружка сходит в направлении, обратном направлению подачи. Направление схода стружки существенно при работе на станках-автоматах. С увеличением l качество обработанной поверхности ухудшается.

Рисунок 10 – Углы наклона главной режущей кромки

Углы в плане определяются в основной плоскости на виде сверху.

j - главный угол в плане - угол между проекцией главной режущей кромки на основную плоскость и направлением подачи. С уменьшением j  шероховатость обработанной поверхности уменьшается. Одновременно уменьшается толщина и увеличивается ширина срезаемого слоя, что снижает износ инструмента, однако возможно возникновение вибрации в процессе резания и снижение качества обработанной поверхности. Угол j изменяется в широком диапазоне от 0 о до 95 о.

j 1 вспомогательный угол в плане – угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, обратном движению подачи. С уменьшением угла j 1 шероховатость уменьшается, увеличивается прочность вершины резца и снижается его износ. У проходных резцов угол j 1 составляет обычно 10 о -30 о.

e - угол при вершине - угол между проекцией главной и вспомогательной режущих кромок на основную плоскость (j +j 1 +e =180 о).

Из рассмотренных углов только b , l иe являются постоянными и не зависят от установки резца. Остальные углы изменяются по величине в зависимости от положения вершины резца относительно центров станка (a, a 1 , j ) или поворота резца в резцедержателе (j, j 1 ).

Режущее лезвие резца не всегда прямолинейно. Для обработки фасонных поверхностей, а иногда и в других случаях, главное режущеелезвие делается криволинейным.

Передняя поверхность резца может иметь три формы (рис. 15): плоскую без фаски, рекомендуемую при обработке серого чугуна, однако она может быть использована и для других материалов (см. рис. 15 а); плоскую с фаской - при токарной обработке стали с большими подачами (см. рис. 15 б); криволинейную с фаской - для резцов всех типов при обработке пластичных материалов (см. рис. 15 в).

Форма головки резца, величина углов, форма передней поверхности и режущего лезвия, размеры сечения резца существенно отражаются на процессе резания. Они влияют на величину сил, температуру резца, что, в свою очередь, должно учитываться при определении режимов резания.

Рисунок 11 – Форма передней поверхности резца

Геометрия токарного резца.

Обработка деталей на токарных станках ведется резцами, которые в зависимости от вида выполняемой операции могут иметь различное конструктивное исполнение.

Резец состоит из двух частей:

- рабочая часть (головка)

- крепежная часть (державка)

Основные элементы режущей части рис. (а):

1- Передняя поверхность 4. Главная режущая кромка

2- Главная задняя поверхность 5. Вспомогательная реж. кромка

3- Вспомогательная задняя поверхность 6. Вершина


Основные углы токарного резца

Для определения углов приняты четыре координатные плоскости:

Р v – основная плоскость – плоскость, проходящая через точку реж. кромки перпендикулярно направлению вектора скорости

Р n – плоскость резания – касательная к реж. кромке и перпендикулярная основной плоскости.

Р τ - главная секущая плоскость – перпендикулярная линии пе ресечения P v и P n (перпендикулярная режущей кромке).

P s – рабочая плоскость – плоскость в которой расположены векторы главного движения и подачи.


1)В главной секущей плоскости (Р τ ) измеряются главные углы резца:

γ - передней угол - угол между передней поверхностью и основной плоскостью P v .

α – задний угол – угол между задней поверхностью и плоскостью резания.

β – угол заострения – угол между передней и главной задней поверхностью.

α+β+ γ =90

2) В основной плоскости (P v ) измеряют углы в плане:

φ- главный угол в плане – угол между главной режущей(Pп ) и рабочей плоскостью (P s )

φ`- вспомогательный угол в плане – угол между рабочей плоскостью(P s ) и проекции главной и вспомогательной режущей кромки на P v.

ε угол при вершине

3) В плоскости резания измеряется угол наклона главной режущей кромки -λ- угол между режущей кромкой и основной плоскостью P v .

(+λ ;-λ; λ=0)


Положительный (+λ) упрочняет режущую кромку т.к. сила приходится не на вершину, а на более прочное место режущей кромки. (При чистовой обработки λ принимают отрицательным (до -5°) чтобы стружка не царапала обработанную поверхность.

При черновой обработки – наоборот (до +5°)

Влияние углов токарного резца на процесс резания

Углы режущей части инструмента оказывают большее влияние на процесс резания. Правильно назначив углы можно значительно уменьшить его износ, силы резания, мощность, затрачиваемую на процесс резания. От углов также зависит качество обработанной поверхности и производительность обработки.

Передний угол

γ

10°…+30°

Выбирают в зависимости от:

· Обрабатываемого материала

· Инструментального материала

· Условий обработки

Оказывает наибольшее влияние на процесс резания.

С увеличением γ , уменьшается работа затрачивае-

мая на процесс резания, улучшаются условия схода

стружки, повышается качество обработанной пов-ти.

Однако при этом снижается прочность лезвия,

износ инструмента увеличивается, уменьшается отвод

тепла.

При обр. пластичных и мягких материалов

< γ - увеличивают,

а при обр. хрупких и твердых< γ -уменьшают.

При обр. закаленных сталей твердосплавными резцами и при прерывистом резании < γ делают отрицательным.

Главный задний угол

α

6…12°

Выбирают в зависимости от:

· Обрабатываемого материала

· Инструментального материала

· Условий обработки

Служит для уменьшения трения между задней

поверхностью лезвия и поверхностью резания.

При увеличении < α, снижается прочность лезвия,

поэтому при выборе< α необходимо учитывать

св-ва обрабатываемого материала и условия

резания. При обр. вязких металлов< α – увеличивают,

при обр. хрупких материалов <α – уменьшают.

Главный угол в плане

φ

30…90 °

Влияет на стойкость режущего инструмента и

на шероховатость поверхности.

С уменьшением угла φ-уменьшается шерох-ть обраб.

поверхности, увеличивается длина активной части

реж. кроки (ширина срезаемого слоя),что приводит к

снижению тепловой и силовой нагрузки на резец

след-но уменьшается износ ин-та.

Однако при малых углах φ-сильно возрастает

составляющая силы резания отжимающая резец от

заготовки. Возможно возникновение вибраций. При

φ=90°

Вспомогательный угол в плане

φ`

5…30 0

Служит для уменьшения трения вспомогательной

задней поверхности об обрабатываемую поверхность.

С уменьшением <φ`- уменьшается шероховатость

поверхности, увеличивается прочность вершины лезвия

и снижается износ инструмента.

<φ`=5…10°(при обр. жестких заготовок)

<φ`=30…45°(при обр. нежестких заготовок

Угол наклона главной режущей кромки

λ

-5…15 0

Определяет направление схода стружки

· если λ=0- стружка сходит перпендикулярно

главной режущей кромке.

· если λ - (+)- вершина резца является самой низкой

точкой резца, место первоначального контакта

удалено от вершины, выше стойкость.

Стружка сходит к обработанной поверхности

(черновая обработка).

· если λ-(-)- стружка сходит к обрабатываемой

поверхности (чистовая обработка).

Влияние установки резца при обработке на величины углов.

Значение углов α и γ изменяется в процессе резания при установке вершины резца выше или ниже оси вращения заготовки. Углы φ и φ` - в зависимости от расположения оси резца относительно оси заготовки.

φ`уст.=φ`-w


Под геометрическими параметрами резца понимают значение углов, определяющих взаимное расположение элементов рабочей части резца (передней и задних поверхностей и лезвий резца). Геометрические параметры резца называют углами заточки или геометрией резца. Геометрию резца принято рассматривать в статическом положении резца (углы заточки резца) и в процессе резания (углы резания). При обычных условиях точения различия между углами заточки и углами резания невелики. Однако при обработке крупных резьб, спиралей разница в углах существенна и при назначении углов резца это необходимо учитывать. Для определения углов заточки резца по ГОСТ вводятся следующие понятия: основная плоскость, плоскость резания, главная и вспомогательная секущие плоскости.

ОСНОВНАЯ ПЛОСОКСТЬ Р-Р (рис. 1.5) проводится через рассматриваемую точку параллельно направлению продольной и поперечной подачи.

ПЛОСКОСТЬЮ РЕЗАНИЯ называется плоскость, касательная к поверхности резания, проходящая через прямолинейное главное лезвие и перпендикулярная к основной плоскости.

ГЛАВНОЙ СЕКУЩЕЙ называется плоскость N - N , перпендикулярная к направлению главного режущего лезвия.

ВСПОМОГАТЕЛЬНОЙ СЕКУЩЕЙ называется плоскость N 1 - N 1 , перпендикулярная к направлению вспомогательного режущего лезвия.

Углы резания, измеренные в главной секущей плоскости называются ГЛАВНЫМИ УГЛАМИ резца.

ГЛАВНЫМ ЗАДНИМ углом a называется угол между главной задней поверхностью рабочей части резца и плоскостью резания. Этот угол в основном служит для уменьшения трения поверхности резания о главную заднюю поверхность рабочей части резца и назначается в пределах от 16 О
до 12 О. Величина главного заднего угла зависит от свойств обрабатываемого материала и условий механической обработки. Задний угол a всегда должен быть положительным. Даже при a =0 тело вращения заготовки будет пересекать сечение инструмента.



ПЕРЕДНИМ УГЛОМ g называется угол между передней поверхностью и плоскостью, перпендикулярной к плоскости резания. Выбор величины переднего угла g производится, исходя из условий обработки и физико-механических свойств обрабатываемого материала. При увеличении g облегчается резание, снижаются силы трения, уменьшаются деформации срезаемого слоя и расход энергии, улучшается качество обработанной поверхности. Но чрезмерное увеличение переднего угла приводит к уменьшению прочности режущего клина, ухудшению отвода тепла из зоны резания, уменьшению износостойкости резца.

УГЛОМ ЗАОСТРЕНИЯ b называется угол между передней и главной задней поверхностью резца.

УГЛОМ РЕЗАНИЯ d называется угол между передней поверхностью резца и плоскостью резания. По рис. 1.5: a +b =d ; a +b +g =p /2; d =(p /2)-g .

Вспомогательные углы резца a 1 ; b 1 ; g 1 измеряются во вспомогательной секущей плоскости N 1 - N 1 и определяются также как и главные.

ГЛАВНЫМ УГЛОМ в плане j называется угол между направлением подачи и проекцией главного режущего лезвия резца на основную плоскость.

ВСПОМОГАТЕЛЬНЫМ УГЛОМ в плане j 1 называется угол между направлением подачи и проекцией вспомогательного режущего лезвия на основную плоскость.

УГЛОМ ПРИ ВЕРШИНЕ РЕЗЦА e называется угол между проекциями режущих лезвий резца на основную плоскость.

Между углами в плане j ; j 1 ; e существует зависимость: j +j 1 +e =180 О.

Главный и вспомогательный (j и j 1) углы в плане резца оказывают большое влияние на соотношение осевой и радиальной составляющих усилия резания, условия отвода тепла и качество обработанной поверхности.

Уменьшение главного угла в плане j и вспомогательного j 1 , приводит к снижению шероховатости обработанной поверхности, как это следует из рис. 1.6. и соотношения:

где: Rz - высота микронеровностей на обработанной поверхности, мкм.

Но при малых значениях j и j 1 возрастает радиальная сила резания и снижается точность обработки. Увеличение угла j уменьшает величину радиальной силы резания и поэтому при обработке нежестких валов рекомендуется применять резцы с j = 90°. Рекомендуемые величины углов j и j 1 приведены в табл. 1.2.

УГЛОМ НАКЛОНА РЕЖУЩЕГО ЛЕЗВИЯ КРОМКИ РЕЗЦА l называется угол между режущим лезвием резца и основной плоскостью, проведенной через вершину резца. Угол l положителен, если вершина резца является наиболее низкой точкой главной режущей кромки и отрицательным- если вершина является наивысшей точкой режущей кромки.

При чистовой обработке угол наклона главного режущего лезвия рекомендуется назначать отрицательным.

Положительный угол наклона главного режущего лезвия делает режущую часть резца более массивной и стойкой, поэтому положительные углы наклона главного режущего лезвия резца рекомендуется назначать для черновых операций и при обработке прерывистых поверхностей. В процессе резания при наличии движения подачи плоскость резания меняет свое положение, а вершина резца может быть смещена относительно оси вращения заготовки. Поэтому фактические углы резца при резании зависят от кинематики процесса, относительного расположения вершины резца и оси вращения заготовки, а также величины износа передней и задней поверхностей рабочей части резца.

Расположение вершины резца ниже оси вращения заготовки при наружном точении приводит к уменьшению переднего угла и к увеличению заднего угла резца, а при расположении вершины резца выше оси вращения заготовки- к увеличению переднего угла и уменьшению заднего угла (рис. 1.6).

Из рис. 1.6. фактический задний угол a ф:

где: Δa уст - погрешность, возникающая из-за относительного смещения вершины резца и оси вращения заготовки; a кин –кинетический задний угол.

, (1.6)

Смещение вершины резца относительно оси вращения заготовки допускается в пределах (0,02 - 0,03)D. Например, при обточке валика диаметром 20 мм резцом с j = 45 О, расположенным выше оси вращения на 0,03 D, (т.е. на 0,6 мм) погрешность угла составляет около 2°, а при расположении резца выше оси вращения заготовки на 2 мм, эта погрешность углов уже составила 8°, что недопустимо – главный задний угол a окажется равным нулю или даже отрицательным.





Рисунок 1.6. Изменения переднего и главного заднего углов при установке резца ниже (а ) и выше (б ) линии центров.

Вследствие наличия двух движений – вращения заготовки и продольной подачи главное режущее лезвие резца образует на поверхности детали винтовую поверхность резания. Фактическая плоскость резания, является касательной к винтовой поверхности резания, отклоняется от теоретической плоскости резания, что приводит к возникновению кинематической погрешности главного заднего угла.

Величина угла Δa к определяется из формулы:

(1.7)

где: S - величина подачи угла; D - диаметр обрабатываемой поверхности, мм.

При точении и растачивании величина подачи S мала по сравнению с обрабатываемым диаметром, угол Δa к весьма незначителен (1 О) и поправкой можно пренебречь. Но при нарезании резьбы с крупным шагом, нарезании многозаходных резьб или при точении с большими подачами величина угла Δa к достигает больших значений и поправку следует учитывать.