Строительный портал - NativeStudio

Особенности газовой сварки углеродистых сталей. Сварка углеродистых сталей: проблемы, решения и материалы

» Сварка углеродистых сталей

Углеродистая сталь — сплав железа и углерода с незначительным содержанием полезных примесей: кремний и марганец, вредных примесей: фосфор и сера. Концентрация углерода в сталях данного типа составляет 0,1-2,07%. Углерод выступает в качестве основного легирующего элемента. Именно он определяет сварочно-механические свойства этого класса сплавов.

В зависимости от величины содержания углерода выделяют следующие группы углеродистых сталей:

  • менее 0,25% — низкоуглеродистые;
  • 0,25-0,6 % — среднеуглеродистые;
  • 0,6-2,07 % — высокоуглеродистые.

Сварка низкоуглеродистых сталей

Из-за малого концентрата углерода данный вид имеет следующие свойства :

  • высокая упругость и пластичность;
  • значительная ударная вязкость;
  • хорошо поддается обработке с помощью сварки.

Низкоуглеродистые стали широко применяются в строительстве и при производстве деталей методом холодной штамповки.

Технология сварки низкоуглеродистых сталей

Низкоуглеродистые стали поддаются свариванию лучше всего. Их соединение может проводиться методом ручной дуговой сварки электродами с обмазкой. Применяя данный способ важно правильно подобрать марку электродов, что обеспечит равномерную структуру наплавленного металла. Сваривание должно осуществляться быстро и точно. Перед началом работ нужно подготовить соединяемые детали.

Газовая сварка осуществляется без применения дополнительных флюсов. В качестве присадочного материала используются металлические проволоки с небольшим содержанием углерода. Это поможет предотвратить образование пор.

Для обработки применяется газовая сварка в среде аргона.

После сварки готовую конструкцию необходимо подвергнуть термической обработке путем операции нормализации: изделие следует нагреть до температуры примерно в 400°С; выдержать и охладить на воздухе. Данная процедура способствует тому, что структура стали становится равномерной.

Особенности сварки низкоуглеродистых сталей

Хорошая свариваемость таких сталей обеспечивает равнопрочность сварного шва с основным металлом, а также отсутствие дефектов.

Металл шва обладает пониженным содержанием углерода, доля кремния и марганца увеличена.

При ручной дуговой сварке околошовная область подвергается перегреву, что способствует его незначительному упрочнению.

Шов, наплавленный методом многослойной сварки, отличается повышенным уровнем хрупкости .

Соединения обладают высокой стойкостью против МКК из-за низкой концентрации углерода.

Виды сварки низкоуглеродистых сталей

1. Первым методом для соединения низкоуглеродистых сталей является ручная дуговая сварка электродами с покрытием. Для выбора оптимального вида и марки расходников необходимо учитывать следующие требования:

  • сварной шов без дефектов: пор, подрезов, непроваренных участков;
  • равнопрочное соединение с основным изделием;
  • оптимальный химический состав металла шва;
  • устойчивость швов при ударных и вибрационных нагрузках, а также повышенных и пониженных температурах.

Наименьший показатель напряжения и деформации исполнитель получает при выполнении сварки в нижнем пространственном положении .

Для сварки рядовых конструкций используются следующие марки электродов:

  • АНО-5.
  • ОММ-5.
  • ЦМ-7.

Для сваривания применяются следующие марки сварочных материалов:

  • АН-7.
  • АНО-1.
  • ВСП-1.
  • ВСЦ-2.
  • ДСК-50.
  • К-5А.
  • КПЗ-32Р.
  • МР-1.
  • РБУ-5.
  • СМ-5.
  • УП-1/55.
  • УП-2/55.
  • Э-138/45Н.
  • ЭРС-1.
  • ЭРС-2.

2. Газовая сварка осуществляется в защитной среде из аргона, без использования флюса, с применением металлической проволоки в качестве присадочного материала.

3. Электрошлаковая сварка осуществляется при помощи флюсов. Проволочные и пластинчатые электроды подбираются с учетом состава основного сплава.

4. Автоматическая и полуавтоматическая сварка осуществляется с защитной среде; применяется чистый аргон или гелий, часто используется углекислый газ. CO2 должен обладать высоким качеством. Если соединение кислорода и углерода будет перенасыщено водородом или азотом, то это приведет к порообразованию.

5. Автоматическая сварка под флюсом выполняется электродной проволокой диаметром 3-5 мм; полуавтоматическая — 1,2-2 мм. Сваривание выполняется постоянным током обратной полярности. Режим сварки варьируется в значительных величинах.

6. Наиболее оптимальным способом является сваривание порошковыми проволоками . Сила тока располагается в диапазоне от 200 до 600 А. Сварку рекомендуется проводить в нижнем положении.

7. Для сварки в защитных газах используется углекислый газ, а также смеси инертного газа с кислородом или CO2.

Соединение изделий толщиной менее 2 мм. осуществляется в атмосфере инертных газов электродом.

Чтобы повысить стабильность дуги, улучшить формирование шва и понизить чувствительность наплавленного металла к пористости следует применять смеси газов.

Сваривание в атмосфере углекислого газа предназначено для работ со сплавами толщиной более 0,8 мм. и менее 2,0 мм. В первом случае используется плавящийся электрод, во втором — или . Вид тока постоянный, полярность обратная. Следует отметить, что данный способ отличается повышенным уровнем разбрызгивания.

Сварка среднеуглеродистых сталей

Среднеуглеродистые стали используются в тех случаях, когда необходимы высокие механические свойства. Данные сплавы могут подвергаться ковке.

Также они применяются для деталей, производимых методом холодной пластической деформации; характеризуются как спокойные, что позволяет использовать их в машиностроении.

Технология сварки среднеуглеродистых сталей

Сваривание данных сплавов выполняется не так хорошо, как соединение низкоуглеродистых сталей. Обусловлено это несколькими трудностями:

  • отсутствие равнопрочности основного и наплавленного металлов;
  • высокий уровень риска образования больших трещин и непластичных структур в околошовной зоне;
  • малый показатель стойкости к формированию кристаллизационных дефектов.

Однако, эти проблемы довольно легко решаются посредством выполнения следующих рекомендаций :

  • применение электродов и проволоки с небольшим содержанием углерода;
  • сварочные стержни должны обладать повышенным коэффициентом наплавки;
  • для обеспечения наименьшей степени проплавления основного металла следует производить разделку кромок, устанавливать оптимальный режим сварки, использовать присадочную проволоку;
  • предварительный и сопутствующий подогрев заготовок.

Технология сварки углеродистой стали при выполнении вышеперечисленных рекомендаций не обнаруживает появление проблем и затруднений.

Особенности сварки среднеуглеродистых сталей

Перед свариванием изделие необходимо очистить от грязи, ржавчины, масла, окалины и других загрязнений, которые являются источником водорода и могут поспособствовать образованию пор и трещин в шве. Очищению подвергаются кромки и прилегающие к ним участки шириной не более 10 мм. Это гарантирует прочность соединения при нагрузках различного рода.

Сборка деталей под сварку подразумевает соблюдение зазора, ширина которого зависит от толщины изделия и должна быть на 1-2 мм. больше, чем при работе с хорошо свариваемыми материалами.

Если толщина изделия из среднеуглеродистой стали превышает 4 мм., нужно выполнить разделку кромок.

Для наименьшей проплавки основного металла и оптимального уровня охлаждения следует верно подбирать режим сваривания . Правильность выбора можно подтвердить, осуществив замер твердости наплавленного металла. При оптимальном режиме, она не должна быть выше 350 HV.

Ответственные узлы соединяются в два и более прохода. Не допускаются частые разрывы дуги, ожог (прижег) основного металла и вывод на него кратера.

Сваривание осуществляется с предварительным подогревом от 100 до 400°С. Чем больше содержание углерода и толщина деталей, тем выше должна быть температура.

Охлаждение должно быть медленным, изделие помещается в термостат или накрывается теплоизоляционным материалом.

Виды сварки среднеуглеродистых сталей

Сварка среднеуглеродистых сталей может проводиться несколькими способами, которые мы рассмотрим далее.

1. Ручная дуговая сварка выполняется электродами с основным типом покрытия, обеспечивающие малое содержание водорода в наплавленном металле. Чаще всего исполнители используют следующие электроды для сварки углеродистых сталей:

  • АНО-7.

Особое покрытие сварочных материалов УОНИ гарантирует увеличение стойкости соединения к образованию трещин, а также обеспечивает прочность шва.

Следует учитывать следующие нюансы:

  • вместо поперечных перемещений нужно выполнять продольные;
  • необходимо производить заварку кратеров , иначе увеличивается степень риска формирования трещин;
  • рекомендуется осуществлять термообработку шва.

2. Газовая сварка углеродистых сталей тонколистового формата выполняется левым способом с помощью проволоки, также используется нормальное сварочное пламя . Средний расход ацетилена составляет 120-150 л/ч на 1 мм. толщины свариваемого сплава. С целью уменьшения риска образования кристаллизационных трещин, следует применять сварочные материалы с содержанием углерода не более 0,2-0,3 %.

Толстостенные изделия следует соединять правым способом газовой сварки, который характеризуется более высокой производительностью. Расчет ацетилена также равен 120-150 л/ч. Чтобы избежать перегрева рабочей зоны, расход нужно уменьшать.

Сварка углеродистых сталей газовой сваркой также включает следующие особенности :

  • уменьшение окисления в сварочной ванне достигается пламенем с небольшим переизбытком ацетилена;
  • положительное влияние на процесс оказывает применение флюсов;
  • для избежания хрупкости в околошовной зоне применяют замедление охлаждения с помощью предварительного нагрева до 200-250°С или последующий отпуск при температуре 600-650°С.

После сваривания можно провести термическую обработку или проковку изделия. Эти операции существенно улучшают свойства.

Технология газовой сварки углеродистых сталей разработана с целью получения соединений, обладающих необходимыми механическими свойствами. Поэтому для исполнителя важно учитывать данные специфические черты.

3. Технология сварки под флюсом углеродистых сталей подразумевает применение сварочной проволоки и плавленых флюсов: АН-348-А и ОСЦ-45. Сваривание осуществляется на малых величинах тока. Это позволяет «насытить» наплавленный металл необходимым уровнем кремния и марганца. Данные элементы интенсивно переходят из флюса в металл шва.

Достоинства данного метода: высокая производительность; наплавляемый металл надежно защищен от взаимодействия с воздухом, что обеспечивает высокое качество соединения; экономичность процесса достигается за счет малого разбрызгивания и благодаря сокращению потерь металла на угар; стабильность горения дуги гарантирует получение мелкочешуйчатой поверхности шва.

4. Исполнители часто используют метод аргонодуговой сварки неплавящимся электродом. Основная трудность при сварке среднеуглеродистых сталей данным способом — сложно избежать образования пор из-за небольшого раскисления основного металла. Для решения этой проблемы нужно снизить долю основного металла в наплавленном. Для этого необходимо верно подобрать режимы сварки аргоном углеродистой стали. Сваривание осуществляется постоянным током прямой полярности.

Величина напряжения устанавливается в зависимости от толщины конструкции при однопроходной сварке и исходя из высоты валика, которая составляет 2,0-2,5 мм — при многопроходной. Ориентировочные показатели тока можно определить таким образом: 30-35 А на 1 мм. прутка.

Сварка высокоуглеродистых сталей

Демонстрационная сварка стали от рессор электродом Zeller 655

Потребность в высокоуглеродистых сталях возникает при проведении ремонтных работ, при производстве пружин, режущих, бурильных, деревообрабатывающих и других инструментов, высокопрочной проволоки, а также в тех изделиях, которые должны обладать высокой износостойкостью и прочностью.

Технология сварки высокоуглеродистых сталей

Сваривание возможно, как правило, с предварительным и сопутствующим подогревом до 150-400°С, а также последующей термообработкой . Обусловлено это склонностью данного типа сплавов к хрупкости, чувствительностью к горячим и холодным трещинам, химической неоднородностью шва.

К сведению! Исключения возможны, если использовать специализированные электроды для разнородных сталей. См. фото и подпись к нему ниже.

  • После подогрева необходимо произвести отжиг , который нужно проводить до тех пор, пока изделие не остынет до температуры 20°С.
  • Важным условием является недопустимость осуществления сварки на сквозняках и при температуре окружающей среды ниже 5°С.
  • Для повышения прочности соединения необходимо создавать плавные переходы от одного до другого свариваемого металла.
  • Хорошие результаты достигаются при сваривании узкими валиками , с охлаждением каждого наплавленного слоя.
  • Исполнителю следует также соблюдать правила, предусмотренные для соединения среднеуглеродистых сплавов.

Данный демонстрационный образец (сварены воедино рессора, напильники, подшипник и пищевая нержавейка). Если не обращать внимания на качество швов, варили не профессиональные сварщики, фото подтверждает, что вполне возможна сварка «несвариваемых» сталей.

Видео

Особенности сварки высокоуглеродистых сталей

Рабочую поверхность необходимо очистить от загрязнений различного рода: ржавчина, окалина, механические неровности и грязь. Присутствие загрязнений может привести к образованию пор.

Охлаждать конструкции из высокоуглеродистых сталей нужно медленно , на воздухе, для нормализации структуры.

Высокоуглеродистая сталь не имеет в своем составе легирующих элементов, среди которых находятся хром, ванадий и никель. Стоит отметить, что данный вид стали имеет в своем составе углерод свыше 0,6%. Содержание углерода определяет свойства сталей. Таким образом, с увеличением процентного содержания углерода в составе стали, возрастает предел ее прочности и повышается твердость, но, в тот же момент, снижаются ее пластические свойства.

Углеродистая сталь более устойчива к высоким температурам и сохраняет свои свойства при подогреве до 450 градусов по Цельсию. Она прекрасно воспринимает динамические нагрузки разной тяжести и способна не поддеваться коррозии. В этом случае углеродистая сталь очень легкая и устойчива к износу. Например углеродистой сталью является чугун и его изделия.

Разные виды углеродистых сталей применяются для производства инструментов, деталей для котлов, труб, турбин и других изделий, которые применяются для эксплуатации при высоких нагрузках.

Средне- и высокоуглеродистые стали имеют характерную особенность – образовывать закалочные структуры в сварочном шве и зоне термического влияния, которые могут создавать опасность хрупкого разрушения. Для получения надежных сварочных швов подбирается марка стали в соответствии возможности получения требуемых стабильных механических свойств сварочных соединений.

Высокоуглеродистые стали склонны к хрупкости после воздействия термического цикла сваривания и выражается значительно сильнее, в чем в среднеуглеродистых сталях. Стали данного вида чувствительны к горячим и холодным трещинам. Из-за этого следует обязательно подогревать свариваемый металл до температуры 350 – 400 градусов по Цельсию. После подогрева требует производить отжиг и проводить его до тех пор, пока свариваемое изделие не остынет до температуры 20 градусов по Цельсию.

Изготовление надежных сварочных соединений может затрудняться из-за нависшей опасности образования холодных трещин и повышенной чувствительности сталей данного вида к концентраторам напряжения при статических и динамических нагрузках.

Сварные конструкции проектируются с наименьшей концентрацией напряжений. Радиусы перехода от одного сечения в свариваемой детали к другой должны быть максимальными исходя из допустимых конструктивны соображений.

Для того чтобы повысить прочность сварочных швов высокоуглеродистой стали, следует создавать плавные переходы от одного до другого свариваемого металла. Для стыкового сварочного соединения стоит удалять усиление сварочного шва.

Особое внимание в этом случае нужно уделять проплаву сварочного шва, который имеет более крутой переход от шва к металлу изделия. В случае, когда механическая обработка внутренней поверхности детали для зачистки и проплавления невозможна, то следует проводить комбинированное сваривание без остающейся подкладки.

Стали с низким содержанием углерода относятся к хорошо свариваемым. Однако сварка низкоуглеродистых сталей должна соответствовать ряду требований. Соединение должно быть равнопрочным основному металлу, а дефекты шва должны полностью отсутствовать. Для достижения этой цели применяются различные технологические ухищрения.

Перед тем как приступить непосредственно к сварке деталей необходимо стальной щеткой зачистить поверхность кромок.

Подготовка деталей

При сварке низколегированных малоуглеродистых сталей сформировать качественный сварной шов можно несколькими способами. Чаще всего применяются следующие методы:

  • газовая сварка;
  • РДС электродами с любым покрытием;
  • сварка в среде углекислого газа плавящимся электродом;
  • сварка порошковой проволокой.

Независимо от способа, соединяемые части должны быть установлены специальное сборочное оборудование для надежной фиксации. При использовании дуговых способов свариваемые изделия можно предварительно прихватить покрытым электродом или полуавтоматическим способом в среде защитного углекислого газа. Длина прихваток выбирается исходя из толщины металла. Площадь сечения прихваток должна составлять около трети площади сечения шва, но не должна превышать 30 мм 2 .

Качество прихваток в данном случае играет большую роль, поэтому перед выполнением процедуры их необходимо проверить на наличие дефектов. Если в прихватке обнаруживается трещина, ее необходимо удалить и нанести заново. Для выполнения электрошлаковой сварки деталей между ними следует расположить зазор с расширением к концу шва. Детали фиксируются скобами, которые удаляются по мере формирования валика. Перед АСФ по концам шва необходимо расположить выводные рамки для того, чтобы избежать недостаточного провара вначале и обеспечить вывод кратера в конце шва.

Газовая, ручная дуговая и полуавтоматическая сварка обычно выполняется на весу. При АСФ отсутствие дефектов шва обеспечивается правильным выбором режима сварки. Также свариваемые кромки нужно очистить от разного рода загрязнений.

При дуговой сварке ответственных конструкций следует накладывать швы с 2 сторон. При большой толщине металла желательно накладывать несколько швов. Таким образом можно достичь оптимального состава металла шва. Если в сварочном соединении появились какие-либо дефекты, металл на этом участке следует удалить, очистить и подварить.

Вернуться к оглавлению

РДС покрытыми электродами

РДС низкоуглеродистых сталей выполняется электродами групп Э38, Э42 и Э46 с любым покрытием. Диаметр электрода и параметры сварки подбираются исходя из толщины свариваемых фрагментов. Оптимальными марками электродов являются УОНИ-13/45, СМ-5, МР-3 (для ответственных конструкций), АНО-1, АНО-2 и др.

При РДС наименьшие напряжения и деформации получаются в нижнем пространственном положении. Поэтому все угловые и тавровые соединения лучше приводить в нижнее положение с помощью сборочных приспособлений.

Сварка газом – далеко не лучший способ соединения низкоуглеродистых сталей, но вполне может применяться. Процесс соединения осуществляется нормальным пламенем без использования флюсов присадочными проволоками СВ-08 с пониженным содержанием углерода во избежание окисления зоны сварки. Варить можно правым и левым способами. В первом случае мощность пламени должна составлять 120-150 л/мм, во втором – 100-130 л/мм. При газовой сварке невозможно достичь оптимальных механических свойств сварного шва, но их можно улучшить посредством нормализации, отжига или горячей проковки.

Вернуться к оглавлению

Полуавтоматическая и автоматическая сварка

Технология сварки низколегированных сталей полуавтоматом не позволяет получить шов, механические характеристики которого соответствуют параметрам основного металла. Это обусловлено тем, что процесс происходит без присадочного прутка, поэтому содержание марганца и силиция в металле шва очень незначительное. Для ответственных деталей лучше применять чистый аргон или гелий, в других случаях используется углекислый газ.

Полуавтоматический и автоматический способы сварки низкоуглеродистых сталей ведется в нижнем пространственном положении сварочными проволоками Св-08Г2С или Св-08ГС. Для многослойных швов ответственных конструкций используется проволока 12ГС. Если конструкция будет работать в условия коррозионного изнашивания, следует использовать проволоку Св-08ХГ2С. Хром, содержащийся в ней, придает металлу шва коррозионную стойкость, препятствуя интенсивному изнашиванию детали в воде.

При сварке в среде углекислого газа необходимо обеспечить высокое его качество. Если CO 2 будет перенасыщен водородом или азотом, это неизбежно приведет к образованию пор. Большое значение имеет напряжение на дуге, поскольку повышенная температура сварочной ванны может привести к выгоранию легирующих элементов и ухудшению прочностных свойств соединения. В связи с этим следует правильно выбирать режим сварки. Рекомендуется придерживаться значений, указанных в таблице.

Введение

Сварочная техника и технология занимают одно из ведущих мест в современном производстве. Свариваются корпуса гигантских супер­танкеров и сетчатка человеческого глаза, миниатюрные детали полу­проводниковых приборов и кости человека при хирургических опера­циях. Многие конструкции современных машин и сооружений, например, космические ракеты, подводные лодки, газопроводы и нефтепрово­ды, изготовить без помощи сварки невозможно. Развитие техники предъявляет все новые требования к способам производства и, в част­ности, к технологии сварки. Сегодня сваривают материалы, которые еще относительно недавно считались экзотическими. Это титановые, ниобиевые и бериллиевые сплавы, молибден, вольфрам, композици­онные высокопрочные материалы, керамика, а также всевозможные сочетания разнородных материалов. Свариваются детали электрони­ки толщиной в несколько микрон и детали тяжелого оборудования толщиной в несколько метров. Постоянно усложняются условия, в ко­торых выполняются сварочные работы: сваривать приходится под во­дой, при высоких температурах, в глубоком вакууме, при повышен­ной радиации, в невесомости. Недаром сварка стала вторым после сборки технологическим процессом, впервые в мире опробованным нашими космонавтами в космосе.

Современный технический прогресс в промышленности неразрывно связан с совершенствованием сварочного производства. Сварка, как высокопроизводительный процесс изготовления неразъемных соединений, находит широкое применение при изготовлении металлургического, кузнечнопрессового, химического и энергетического оборудования, различных трубопроводов, в сельскохозяйственном и тракторном машиностроении, в производстве строительных и других конструкций.


Краткие сведения об углеродистых сталях

Углеродистые стали - это сплавы железа с углеродом, содержащие до 2,14 % углерода (С) при малом содержании других элементов. Они обладают высокой пластичностью и хорошо деформируются. Углерод сильно влияет на свойства стали даже при незначительном изменении его содержания. Углеродистые стали можно классифицировать по нескольким параметрам:

1) По качеству.

2) По способу раскисления.

По качеству

Стали обыкновенного качества

Изготавливаются по ГОСТ 380-71. Обозначают буквами Ст и условными номерами от 0 до 6, например: Ст 0, Ст 1, ..., Ст 6. Степень раскисления обозначают буквами сп (спокойная сталь), пс (полу­спокойная), кп (кипящая), которые ставят в конце обозначения марки стали.

В зависимости от назначения различают три группы сталей обыкновенного качества: А, Б и В. В марках указывают только группы Б и В, группу А не указывают.

Группа А поставляются только по механическим свой­ствам, химический состав сталей этой группы не регламентируется, он только указывается в сертификатах завода-изготовителя. Стали этой группы обычно используются в изделиях в состоянии поставки без обработки давлением и сварки. Чем больше цифра условного номера стали, тем выше ее прочность и меньше пла­стичность.

Группа Б поставляется только с гарантируемым химическим составом. Чем больше цифра условного номера стали, тем выше содержание углерода. Эти стали в дальнейшем могут подвергаться деформации (ковке, штамповке и др.), а в отдельных случаях и термической обработке. При этом их первоначальная структура и механические свойства не сохраняются. Знание химического состава стали позволяет определить температурный режим горячей обработки давлением и термообработки.

Группа В могут подвергаться сварке. Их поставляют с гарантированным химическим составом и гарантированными свойствами. Стали этой группы маркируются буквой В и цифрой, например - В СтЗпс. Эта сталь имеет механические свойства, соответствующие ее номеру по группе А, а химический состав - номеру по группе Б с коррекцией по способу раскисления.

Качественные углеродистые стали

Этот класс углеродистых сталей изготавливается по ГОСТ 1050-74. Качественные стали поставляют и по химическому составу, и по механическим свойствам. К ним предъявляются более жесткие требования по содержанию вредных примесей (серы не более 0,04 %, фосфора не более 0,035 %).


Качественные углеро­дистые стали маркируют двузначными цифрами 08, 10, 15, ..., 85, указывающими среднее содержание углерода в сотых долях про­цента с указанием степени раскисленности (кп, пс).

Качественные стали делят на две группы: с обычным содержанием марганца (до 0,8 %) и с повышенным содержанием (до 1,2 %). При обозна­чении последних в конце марки ставится буква Г, например, 60 Г. Марганец повышает прокаливаемость и прочностные свойства, но несколько снижает пластичность и вязкость стали.

При обозначении кипящей или полуспокойной стали в конце марки указывается степень раскисленности: кп, пс. В случае спокойной стали степень раскисленности не указывается.

низкоуглеродистые (до 0,25 % С).

среднеуглеродистые (0,3-0,55 % С).

высокоуглеродистые (0,6-0,85 % С).

Для изделий ответственного назначения применяют высоко­качественные стали с еще более низким содержанием серы и фос­фора. Низкое содержание вредных примесей в высококачествен­ных сталях дополнительно удорожает и усложняет их производ­ство. Поэтому обычно высококачественными сталями бывают не углеродистые, а легированные стали. При обозначении высоко­качественных сталей в конце марки добавляется буква А, напри­мер сталь У10А.

Углеродистые стали, содержащие 0,7-1,3 % С, используют для изготовления ударного и режущего инструмента. Их марки­руют У7, У13, где У означает углеродистую сталь, а цифра - содержание углерода в десятых долях процента.

По способу раскисления

Полуспокойные

Спокойные

Содержит 0,15-0,35% кремния, раскисляется кремнием, марганцем.


Свариваемость углеродистых сталей

Малоуглеродистые стали отличаются хорошей сварива­емостью. Снижать свариваемость могут вредные примеси, если со­держание их превышает норму.

Вредные примеси могут ухудшать свариваемость даже и при среднем содержании, не выходящем из нормы, если они образуют местные скопления, например, вследствие ликвации. Вредными для сварки элементами в малоуглеродистой стали могут являться углерод, фосфор и сера, причём последняя особенно склонна к лик­вации с образованием местных скоплений.

Отрицательное влияние на свариваемость может оказывать так­же засорённость металла газами и неметаллическими включениями. Засорённость металла вредными примесями зависит от способа его производства и о ней частично можно судить по маркировке метал­ла. Сталь повышенного качества сваривается лучше, чем сталь обычного качества соответствующей марки; сталь мартеновская лучше, чем сталь бессемеровская, а сталь мартеновская спокойная лучше, чем кипящая. При изготовлении ответственных сварных из­делий указанные отличия в свариваемости малоуглеродистых ста­лей должны обязательно приниматься во внимание и учитываться при выборе марки основного металла.

Углеродистые стали, содержащие углерода более 0,25%, обла­дают пониженной свариваемостью по сравнению с малоуглероди­стыми, причём свариваемость постепенно снижается по мере повы­шения содержания углерода. Стали с повышенным содержанием углерода легко закаливаются, что ведёт к получению твёрдых хруп­ких закалочных структур в зоне сварки и может сопровождаться образованием трещин. С повышением содержания углерода растёт склонность металла к перегреву в зоне сварки. Увеличенное содер­жание углерода усиливает процесс его выгорания с образо­ванием газообразной окиси углерода, вызывающей вскипание ванны и могущей приводить к значительной пористости наплавлен­ного металла.

При содержании углерода свыше 0,4-0,5% сварка стали ста­новится одной из сложнейших задач сварочной техники. Углероди­стые стали вообще обладают пониженной свариваемостью и, если это возможно, рекомендуется заменять их низколегированными кон­струкционными сталями, которые дают ту же прочность при значи­тельно меньшем содержании углерода за счёт других легирующих элементов. При сварке углеродистых сталей плавлением обычно не придерживаются соответствия химического состава присадочного и основного металла, стремясь получить наплавленный металл рав­нопрочным с основным за счёт легирования марганцем, кремнием и др. при сниженном содержании углерода.

Сварка углеродистых сталей часто выполняется с предваритель­ным подогревом и последующей термообработкой, причём, если возможно, во многих случаях стремятся совместить термообработку с процессом сварки, например, при газовой сварке мелких деталей, при газопрессовой сварке, при точечной и стыковой контактной сварке и т. д.

Большинство низколегированных конструкционных сталей обла­дает удовлетворительной свариваемостью. Ввиду возросшего зна­чения сварки новые марки конструкционных низколегированных сталей, как правило, выпускаются с удовлетворительной свари­ваемостью.

В зависимости от химического состава сталь бывает углеродистая и легированная.

Углеродистая сталь делится на:

  • низкоуглеродистую (содержание углерода до 0,25%)
  • среднеуглеродистую (содержание углерода от 0,25 до 0,6%)

Сталь, в составе которой кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т. д.), называется легированной. Легированные стали бывают:

  • низколегированные (суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%)
  • среднелегированные (суммарное содержание легирующих компонентов, кроме углерода, от 2,5 до 10%)
  • высоколегированные (суммарное содержание легирующих компонентов, кроме углерода, более 10%).

Технология сварки легированных сталей

Сварка низколегированных и среднелегированных конструкционных сталей

Свариваемость таких сталей зависит от содержания углерода и легирующих компонентов и ухудшается с ростом содержания углерда и легирующих компонентов. Стали кремнемарганцевой группы 15ГС, 18Г2С и 25Г2С сваривают электродами типа Э60А марки УОНИ-13/65. Перед сваркой кромки тщательно зачищают от грязи, ржавчины и окалины.

Сварку выполняют предельно короткой дугой. Изделие перед сваркой подогревают до температуры 200 С, электроды перед сваркой прокаливают при 400°С в течение одного часа.

Кремнемарганцемедистые стали 10Г2СД, 10ХГСНД, 15ХСНД и 12ХГ сваривают электродами типа Э50А марки УОНИ-13/55. Изделие перед сваркой не подогревают.
Сварка низколегированных и среднелегированных конструкционных сталей

Особенности сварки высоколегированных сталей

К высоколегированным относят стали, суммарный состав легирующих элементов в которых составляет не менее 10%, при содержании одного из них не менее 8%. При этом содержание железа должно составлять не менее 45%. В основном это стали, обладающие повышенной коррозионной стойкостью или жаростойкостью. Легирование сталей выполняют углеродом, марганцем, кремнием, молибденом, алюминием, ванадием, вольфрамом, титаном и ниобием, бором, медью, серой и фосфором. Введение легирующих элементов меняет физические и химические особенности стали.

Так, углерод способствует повышению прочности стали и снижению ее пластичности. Окисление углерода в процессе сварки способствует появлению пор. Кремний является раскислителем и содержание его в стали более 1% приводит к снижению свариваемости. Хром также снижает свариваемость, способствуя созданию тугоплавких окислов. Никель повышает прочность и пластичность сварочного шва, не снижая свариваемость стали. Молибден увеличивает прочность и ударную вязкость стали, ухудшая свариваемость. Ванадий в процессе сварочных работ сильно окисляется, поэтому его содержание в стали предусматривает введение раскислителей. Вольфрам тоже сильно окисляется при повышенных температурах, ухудшает свариваемость стали.

Титан и ниобий предотвращают межкристаллитную коррозию. Бор повышает прочность, но затрудняет свариваемость. Медь повышает прочность, ударную вязкость и коррозийную стойкость стали, но снижает ее свариваемость. Повышенное содержание в стали серы приводит к образованию горячих трещин, а фосфор способствует образованию холодных трещин.

Содержание тех или иных легирующих элементов определяют по маркировке стали. Первые две цифры в маркировке означают содержание углерода в сотых долях процента; легирующие элементы обозначают буквенными символами, а стоящие за ними цифры указывают на примерное содержание этих элементов, при этом единицу и меньше не ставят. Символ «А», установленный в конце маркировки, указывает, что сталь высококачественная, с пониженным содержанием серы и фосфора. Наиболее широкое применение получили коррозионно-стойкие хромоникелевые стали (12Х18Н10Т, 10Х23Н18 и некоторые другие).

Из вышесказанного видно, что, как правило, легирование стали приводит к снижению ее свариваемости, а первостепенную роль при этом играет углерод. Поэтому доля влияния каждого легирующего элемента может быть отнесена к доле влияния углерода. Повышенное содержание углерода и легирующих элементов способствует увеличению склонности стали к резкой закалке в пределах термического цикла, происходящего во время сварки. В результате этого околошовная зона оказывается резко закаленной и теряет свою пластичность.

Поэтому при сварочных процессах высоколегированных сталей, происходящих в зоне плавления металла и околошовной области, возникают горячие трещины и межкристаллитная коррозия, проявляющаяся в процессе эксплуатации. Основной причиной появления трещин является образование крупнозернистой структуры в процессе кристаллизации и значительные остаточные напряжения, полученные при затвердевании металла. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, поэтому у большинства высоколегированных сталей сварочный шов формируется хуже, чем у низколегированных и даже углеродистых сталей.

Межкристаллитная коррозия характерна для всех видов высоколегированных сталей, имеющих высокое содержание хрома. Под действием нагрева образовавшиеся карбиды хрома выпадают по границам зерен, снижая их антикоррозийные свойства.

Препятствует образованию карбидов хрома легирование стали титаном, ниобием, танталом, цирконием и ванадием. Положительное влияние на качество сварочного шва оказывает дополнительное легирование сварочной проволоки хромом, кремнием, алюминием, ванадием, молибденом и бором.

Для сварки высоколегированных сталей используют как ручную дуговую , так механизированную сварку под флюсом и в среде защитных газов . Сварка выполняется при минимальном тепловложении с использованием термообработки и применением дополнительного охлаждения. Введение легирующих элементов меняет и технологические особенности стали. Так, система легирования снижает теплопроводность стали и повышает ее электрическое сопротивление. Это оказывает влияние на скорость и глубину плавления металла, что требует меньшего вложения энергии, и увеличения скорости подачи сварочной проволоки.

Ручную дуговую сварку высоколегированных сталей выполняют при пониженных тока обратной полярности. Сварку ведут короткой дугой ниточными валиками без поперечных колебаний.

Проволока, применяемая для изготовления электродов, должна соответствовать марке стали с учетом ее свариваемости. Защитное покрытие электродов должно иметь состав, снижающий отрицательное действие повышенной температуры. К примеру, для сварки кислотостойкой стали 12X18HI0T электроды типа Э-04Х20Н9 (марки ЦЛ-11) препятствуют образования горячих трещин и межкристаллитной коррозии. Предварительный и сопутствующий подогрев снижает опасность возникновения трещин. Для защиты сварочной ванны используют инертный газ или аргон и его смеси с гелием, кислородом и углекислым газом.

Сварку в среде углекислого газа можно выполнять только в случаях, когда отсутствует опасность возникновения межкристаллитной коррозии. Сварка плавящимся электродом выполняется при значениях тока, обеспечивающих струйный перенос электродного металла.

При сварке возникает опасность коробления и остаточных сварочных напряжений. Поэтому после сварки часто возникает необходимость в термообработке.

Технология сварки углеродистых сталей

Сварка низкоуглеродистых сталей

Углеродистая сталь делится на:

  • низкоуглеродистую (содержание углерода до 0,25%),
  • среднеуглеродистую (содержанна утлеророда от 0,25 до 0,6%)
  • высокоуглеродистую (содержание углерода от 0,6 до 2,0%).

Низкоуглеродистые стали имеют хорошую свариваемость. При выборе типа и марки электрода для сварки низкоуглеродистых сталей руководствуются следующими требованиями:

  • обеспечение равнопрочности сварного соединения с основным металлом;
  • получение сварных швов без дефектов;
  • обеспечение требуемого химического состава металла шва;
  • получение стойкости сварных соединений в условиях вибрационных и ударных нагрузок, а также при повышенных или пониженных температурах.

Для сварки низкоуглеродистых сталей применяют электроды марок ОММ-5, СМ-5, ЦМ-7, КПЗ-32Р, ОМА-2, УОНИ-13/45, СМ-11 и др.

Сварка среднеуглеродистых сталей

Такие стали имеют повышенное содержание углерода, который является причиной образования кристаллизационных трещин при сварке, а также малопластичных закалочных структур и трещин в околошовной зоне. Поэтому для повышения стойкости металла шва против образования кристаллизационных трещин следует понизить количество углерода в металле шва. Это достигается применением электродов с пониженным содержанием углерода, а также уменьшением доли участия основного металла в металле шва.

Чтобы снизить вероятность появления закалочных структур, необходимо применять предварительный и сопутствующий подогрев изделия. Надежным способом достижения равнопрочности сварного соединения при низком процентном содержании углерода является дополнительное легирование металла шва марганцем и кремнием.

Среднеуглеродистые стали свариваются электродами УОНИ-13/45, УП-1/45, УП-2/45, ОЗС-2,УОНИ-13/55, К-5А. УОНИ-13/65 и др.

Сварка сталей в защитной среде

Дуговую сварку в среде защитных газов и под флюсами применяют для снижения вредного воздействия атмосферных газов на сварочную ванну. Кроме защитных свойств такая сварка может приводить к изменениям свойств сварочного шва, так как, взаимодействуя с некоторыми защитными газами, жидкий металл может менять свою структуру и химический состав. Так, азот, кислород, водород и некоторые другие газы растворяются в металле, изменяя его пластичность и вязкость.

Любой защитный газ, введенный в зону сварки, может оказывать значительное влияние на происходящие в жидком металле физические и металлургические процессы (горение дуги, плавление основного металла и т.д.). Поэтому, если требуется сохранить физические свойства металлов, в качестве защитных применяют инертные газы, доля влияния которых на процессы, происходящие в сварочной ванне, минимальна. Сварка в среде инертного газа или смесей инертных газов практически представляет собой простой переплав основного и электродного металлов без существенного изменения их химического состава.

Преимущества сварки в среде защитных газов заключаются в возможностях существенно повысить производительность труда и качество свариваемых швов по сравнению с простой дуговой сваркой. Кроме того, достигается большой диапазон (от десятых доле миллиметра до десятков миллиметров) свариваемых толщин, доступность наблюдения за сварочным процессом и т.д.

Сварку в среде защитных газов ведут как плавящимся, так и неплавящимся электродом, в ручном, полуавтоматическом и автоматическом режимах.

Сварка сталей в защитных газах плавящимся электродом

Сварка сталей плавящимся электродом выполняется преимущественно в среде углекислого газа или аргона. При сварке плавящимся электродом источником тепла является дуга, возбуждаемая между свариваемыми элементами и электродной проволокой, непрерывно подаваемой в зону сварочной дуги. Сварочный шов создается за счет формирования сварочной ванны из расплавленного основного и электродного металлов. Основным способом местной защиты является газовый поток с центральной, боковой и комбинированной подачей газа.

Сварка плавящимся электродом в среде углекислого газа

Сварку плавящимся электродом в среде углекислого газа применяют для большинства сталей, которые имеют удовлетворительную свариваемость другими видами дуговой сварки. Отличительной характеристикой такой сварки является ее высокая производительность и относительно низкая стоимость. Для сварки в среде этого защитного газа используют проволоку с повышенным содержанием раскислителей (кремния и марганца), которые компенсируют выгорание этих компонентов в зоне сварки.

Особенностью сварки в среде углекислого газа является разложения его на атомарный кислород (О) и окись углерода (СО). Окись углерода в свою очередь распадается на углерод и кислород. Атомы кислорода окисляют железо и легирующие присадки, в результате чего металл сварочной ванны насыщается кислородом и оксидом железа, и его свойства ухудшаются. Кроме того, образовавшийся в результате кристаллизации металла углекислый газ начинает выделяться в виде пузырьков. Часть пузырьков этого газа не успевает покинуть металл, застывая в виде пор. Легирование кремнием и марганцем сварочной проволоки снижает эту вероятность, так как окислы железа раскисляются не за счет углерода, а за счет веществ, содержащихся в этих компонентах. При этом образования окиси углерода при кристаллизации металла не происходит, а качество сварочного шва улучшается.

Диаметр электродной проволоки выбирают в зависимости от типа сварного соединения, толщины свариваемого металла и положения шва в пространстве. Эта зависимость отражена в таблице.

Зависимость диаметра сварочной проволоки от толщины свариваемого металла и положения шва в пространстве

Металл толщиной более 4 мм необходимо сваривать с двух сторон, для более тонких металлов следует подбирать режимы, чтобы выполнить полный провар за один проход. Более тонкие металлы сваривают за один проход, обеспечивая тщательную предсварочную сборку деталей, точное направление электрода по стыку и неизменные режимы сварки. При сварке однослойных стыков и первого слоя многослойных швов горелку перемещают возвратно-поступательными движениями. Если сварка выполняется со скосом кромок, то электрод следует направлять в угол разделки.

Аргонодуговая сварка плавящимся электродом

Аргонодуговая сварка плавящимся электродом применяется в основном для легированных сталей и цветных металлов. Процесс сварки происходит капельным и струйным способом переноса электродного металла и высокой глубиной проплавления основного металла. Переход капельного переноса электродного металла в струйный происходит при критических значениях токов, и при сварке сталей находится в пределах 60 -120 А на 1 мм² сечения электродной проволоки.

Зависимость величины критического значения тока от толщины сварочной проволоки отражена в таблице. Этот вид сварки предусматривает тщательную зачистку кромок и подгонку свариваемых поверхностей.

Последовательность выполнения сварки сталей в защитных газах плавящимся электродом

Металл сварочной проволоки расплавляется дугой и переносится каплями в сварочную ванну, не взаимодействуя с окружающим воздухом. Размер капель электродного металла зависит от состава металла и защитного газа, направления и величины тока. Так, с увеличением силы тока растет электродинамическая сила и размер капель расплавленного металла уменьшается. При достижении силы тока критического состояния капельный перенос металла переходит в струйный.

На величину критического тока оказывает влияние поверхностное натяжение металла. Эти две величины находятся в прямой зависимости: чем больше поверхностное натяжение металла, тем больше критический ток и наоборот. Изменять критический ток можно, составляя различные газовые смеси. Так, при добавлении к основному газу азота или водорода критический ток повышается, а добавление кислорода снижает его значение. Принципиальная схема поста, предназначенного для сварки плавящимся электродом, представлена на рис.1.

Источник питания должен обеспечивать надежное возбуждение сварочной дуги и поддерживать ее устойчивое горение, способствовать благоприятному переносу электродного материала с минимальным его разбрызгиванием, иметь возможность настройки на необходимый режим. Для сварки плавящимся электродом применяют выпрямители, преобразователи и агрегаты. К наиболее универсальным выпрямителям относят аппараты серии ВДУ (рис.2), так как их электрические схемы предусматривают переключение для работы с жесткими и падающими внешними характеристиками. Эти выпрямители обеспечивают плавное дистанционное регулирование выходного тока и напряжения, стабилизацию при изменениях напряжения в сети.

Включение выпрямителей в силовую сеть защищено от кратковременных аварийных коротких замыканий автоматическим выключателем. Конструкции горелок, предназначенных для подачи сварочной проволоки и защитного газа в зону электросварочной дуги, показаны на рис.3 и 4.

Рис. 2. : 1 - блок управления; 2 - уравнительный реактор; 3 - автоматический выключатель; 4 - блок обратной связи; 5 - вентилятор; 6 - силовой блок тиристоров; 7 - дроссель; 8 - силовой трансформатор


Рис. 3. : 1 - сопло сменное; 2 - наконечник; 3 - щиток; 4 - микропереключатель; 5 - направляющий канал; 6 - рукав для подачи газа и токопровод; 7 -9 - рукава для подачи воды; 8 - провод управления


Рис. 4. : 1 - токосъемный наконечник; 2 - сопло; 3 - спираль; 4 - втулка; 5 - ручка; 6 - трубка для подачи газа; 7 - спираль; 8 - плетенка; 9 - втулки резиновые; 10 - микропереключатель; 11 - пружина.

Стабильность сварочного шва зависит от постоянства длины дуги, которая обеспечивается за счет поддержания нужной скорости подачи электродной проволоки, равной скорости ее плавления. Так как одним из условий устойчивого горения дуги является высокая плотность сварочного тока, для сварки используют проволоку малых (0,8 - 2, 5 мм) диаметров, что требует относительно больших скоростей ее подачи. При больших скоростях подачи проволоки регулирование параметров ручными методами выполнить практически невозможно. Поэтому дл поддержания стабильной дуги и для обеспечения процесса ее саморегулирования применяю источники питания постоянного тока с жестко или возрастающей внешней характеристикой.

К основным параметрам режима сварки плавящимся электродом относятся сила тока полярность, напряжение дуги, диаметр и скорость подачи проволоки, расход защитного газа, вылет электрода и скорость сварки. Несмотря на то, что при прямой полярности скорость расплавлении металла выше, в этом режиме не обеспечиваете стабильность горения дуги, и происходит интенсивное разбрызгивание металла. Поэтому сварку плавящимся электродом лучше выполнять при обратной полярности с непрерывной подаче проволоки, то есть в полуавтоматическом ил автоматическом режимах. Техника сварки в полуавтоматическом режиме практически не отличается от ручной дуговой сварки покрытым электродами. Сварку можно выполнять в любых пространственных положениях с использованием приемов удержания сварочной ванны. Металл толщиной до 4 мм сваривают без раздела кромок, а для улучшения условий формирования шва сварку лучше выполнять на остывающей подкладке из основного металла или на медной подкладке с формирующей канавкой.

Сварка сталей в среде защитных газов неплавящимся электродом

Сварку неплавящимся электродом можно выполнять как на постоянном, так и на переменном токе (трехфазном или однофазном). Принципиальные схемы сварочных постов в среде защитных газов в зависимости от применяемого для питания дуги напряжения приведены на рис. 1 и 2.

Питание сварочной дуги однофазным переменным током требует более высокого напряжения холостого тока. Это связано с тем, что дуговой разряд происходит за счет термоионной эмиссии, что создает неодинаковые условия горения дуги при прямой и обратной полярности тока, когда положение анода и катода меняется местами. Так, в полупериоды обратной полярности тока, когда катодом является изделие, для возбуждения дуги требуется относительно высокое напряжение. После возбуждения дуги напряжение падает до некоторой постоянной величины и выдерживается при таком значении до смены полярности тока. При прямой полярности, когда изделие является анодом, дуга горит при более низких напряжениях. Поэтому в установках с однофазным переменным током для надежного возбуждения дуги используют генераторы импульсов высокого напряжения и осцилляторы. Кроме того, для устойчивого горения дуг применяют конденсаторные батареи.

Рис. 1. : 1 - баллон с газом; 2 - редуктор; 3 - ротаметр; 4 - горелка; 5 - свариваемая деталь; 6 - акумулятор; 7 - дроссель; 8 - дроссель высокочастотный; 9 - вольтметр; 10 - баластный реостат; 11-12 - амперметры переменного и постоянного тока; 13 - осцилятор; 14 - трансформатор сварочный

Рис. 2. : 1 - сварочный преобразователь; 2 - баластный реостат; 3 - баллоны с защитным газом; 4 - редуктор; 5 - электрогазовый клапан; 6 - ротометр; 7 - шунт; 8 - горелка; 9 - свариваемое изделие; 10 - ресивер; 11 - контактор; 12 - приспособление для защиты обратной стороны шва.

Сварочные установки с трехфазным переменным током лишены этого недостатка, так как в них одновременно горит три дуги. В установках этого типа используется два вольфрамовых электрода, к каждому из которых подается отдельная фаза, а третья фаза подается к свариваемому изделию. Благодаря такой электрической схеме одновременно горит три сварочные дуги: две между каждой дугой и изделием, а третья (независимая) дуга - между электродами. Поэтому трехфазное питание предусматривает питание от источников с более низким напряжением холостого хода. Конструктивная схема горелок, применяемых в однофазном и трехфазном режимах, показана на рис. 3 и 4.

Рис. 3. : 1 - керамическое сопло; 2 - цанга; 3 - корпус; 4 - клапан газовый; 5 - рукоятка; 6 - рукав

Рис. 4. : 1 - цанга; 2 - вольфрамовые электроды; 3 - колпачки; 4 - керамическое сопло; 5 - рукоятка

Рис. 5. («Разряд-250»): 1 - щиток; 2 - трансформатор; 3 - стабилизатор; 4 - заземление; 5 - переключатель режимов работы

Основой сварочного поста для ручной сварки неплавящимся электродом в условиях мастерских и строительных площадок служит трансформатор. Хорошо зарекомендовали себя аппараты типа и-120УЗ («Разряд-250» и «Разряд-160»), которые хорошо переносят транспортировку и переноску (рис.5). Отличаются эти конструкции одна от другой трансформаторами. В установке «Разряд-250»состоит из трех ленточных магнитопроводов, а в установке «Разряд-160» - из двух.

Поэтому для получения трехфазной дуги используют два стандартных трансформатора, соединяя их в электрическую схему треугольником. Технически характеристики устройств питания сварочной дуг типа И-У120УЗ приведены в таблице.

При сварке на постоянном токе к свариваемому изделию подключают положительную клемму, благодаря чему во время всего процесса сварки соблюдается прямая полярность и создаются лучшие условия для термоэлектронной эмиссии.

Характеристики устройств питания сварочной дуги

Показатель "Разряд-250" "Разряд-160"
Сварочный ток, А:
-номинальный
-предел регулирования
43
90-250
43
60-160
Число ступеней регулирования сварочного тока 7 7
Напряжение, В:
-питания
-холостого хода
-номинальное рабочее
380
60 +2
30
160
60 +2
26,4
Продолжительность работы ПН, % 20 20
Частота следлвания стабилизируиалх импульсов, Гц 100 100
Габариты, мм 350x310x480 350x310x480
Масса, кг 50 42

Технология сварки стали под флюсом

Сварка под флюсом применяется для высокоуглеродистых сталей и цветных металлов и их сплавов. Флюсы защищают сварочную дугу и ванну от вредного атмосферного воздействия, повышая качество шва. Кроме того, флюсы оказывают влияние на устойчивость горения дуги, формирование и химический состав сварочного шва. Требуемые механические свойства, структуру металла и сварочного соединения обеспечивают сочетанием необходимого состава флюса и электродного материала.

Так как выполнить равномерное покрытие флюсом в ручном режиме очень сложно, то данная технология чаще всего предусматривает сварку в автоматическом режиме (рис. 1). Флюс 6 в зону горения сварочной дуги подается из бункера 3 таким образом, чтобы, расплавившись под действием тепла, он полностью покрыл образовавшуюся сварочную полость плотной оболочкой 7, непроницаемой для атмосферного воздуха.

Флюсовый свод поддерживается давлением паров металла, флюса и газов, образовавшихся под действием сварочной дуги. Флюсовая пленка не только защищает сварочную ванну, но предотвращает разбрызгивание металла. Кроме того, расплавленный флюс вступает в химическое взаимодействие с металлом, принимая активное участие в формировании кристаллической решетки сварочного шва и околошовной зоны.

Теплопроводность флюса намного ниже теплопроводности металла, поэтому образовавшаяся корка 9 замедляет процесс охлаждения сварочной ванны, предоставляя дополнительную возможность выходу на поверхность жидкого металла выделяемых газов и механических включений. Это способствует очищению сварочного шва и образованию более однородной его структуры.

После полного остывания сварочного шва флюсовая корка легко отделяется, а нерасплавленный флюс удаляется при помощи отсасывающего устройства 5 и может использоваться при последующей сварке. Флюсовая аппаратура, применяемая при сварке под флюсом, показана на рис. 2.

Для сварки под флюсом служат трансформаторы переменного тока с пологопадающей характеристикой. Это оборудование позволяет с большей экономичностью создать устойчивую сварочную дугу.

Параметры режима сварки подбирают в зависимости от толщины свариваемого металла и требований, которым должен отвечать сварочный шов. Так, увеличение силы сварочного тока вызывает увеличение давления сварочной дуги, что в свою очередь приводит к росту глубины плавления металла.

Увеличение диаметра электрода при неизменном токе приводит к снижению глубины плавления, но автоматически увеличивает ширину сварочного шва. На практике больше применяют малые диаметры электродной проволоки, что позволяет при меньшем токе добиться высокой производительности сварочного процесса.

На параметры сварочного шва существенное влияние оказывает скорость сварки. Так, при малых скоростях глубина проплавления существенно не меняется, но увеличивается ширина шва. При увеличении скорости сварки ширина сварочного шва заметно снижается, но увеличивается его выпуклость. Заметное увеличение скорости сварки может привести к краевым непроварам. Зависимость формы сварочного шва от скорости сварки наглядно представлена на рис.3. Для удержания сварочной ванны от вытекания применяют флюсовые подушки или специальные подкладки.

Существенным достоинством сварки под флюсом являются незначительные потери на угар металла и его разбрызгивание. Это увеличивает эффективность тепловой мощности дуги и позволяет расширить диапазон свариваемых толщин деталей без скоса кромок.

Рис. 3. Зависимость формы шва от скорости сварки (метры в час)